Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oposlem Structured version   Unicode version

Theorem oposlem 32832
Description: Lemma for orthoposet properties. (Contributed by NM, 20-Oct-2011.)
Hypotheses
Ref Expression
oposlem.b  |-  B  =  ( Base `  K
)
oposlem.l  |-  .<_  =  ( le `  K )
oposlem.o  |-  ._|_  =  ( oc `  K )
oposlem.j  |-  .\/  =  ( join `  K )
oposlem.m  |-  ./\  =  ( meet `  K )
oposlem.f  |-  .0.  =  ( 0. `  K )
oposlem.u  |-  .1.  =  ( 1. `  K )
Assertion
Ref Expression
oposlem  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( (  ._|_  `  X )  e.  B  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  ( X  .<_  Y  ->  (  ._|_  `  Y )  .<_  (  ._|_  `  X )
) )  /\  ( X  .\/  (  ._|_  `  X
) )  =  .1. 
/\  ( X  ./\  (  ._|_  `  X )
)  =  .0.  )
)

Proof of Theorem oposlem
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oposlem.b . . . . 5  |-  B  =  ( Base `  K
)
2 eqid 2443 . . . . 5  |-  ( lub `  K )  =  ( lub `  K )
3 eqid 2443 . . . . 5  |-  ( glb `  K )  =  ( glb `  K )
4 oposlem.l . . . . 5  |-  .<_  =  ( le `  K )
5 oposlem.o . . . . 5  |-  ._|_  =  ( oc `  K )
6 oposlem.j . . . . 5  |-  .\/  =  ( join `  K )
7 oposlem.m . . . . 5  |-  ./\  =  ( meet `  K )
8 oposlem.f . . . . 5  |-  .0.  =  ( 0. `  K )
9 oposlem.u . . . . 5  |-  .1.  =  ( 1. `  K )
101, 2, 3, 4, 5, 6, 7, 8, 9isopos 32830 . . . 4  |-  ( K  e.  OP  <->  ( ( K  e.  Poset  /\  B  e.  dom  ( lub `  K
)  /\  B  e.  dom  ( glb `  K
) )  /\  A. x  e.  B  A. y  e.  B  (
( (  ._|_  `  x
)  e.  B  /\  (  ._|_  `  (  ._|_  `  x ) )  =  x  /\  ( x 
.<_  y  ->  (  ._|_  `  y )  .<_  (  ._|_  `  x ) ) )  /\  ( x  .\/  (  ._|_  `  x )
)  =  .1.  /\  ( x  ./\  (  ._|_  `  x ) )  =  .0.  ) ) )
1110simprbi 464 . . 3  |-  ( K  e.  OP  ->  A. x  e.  B  A. y  e.  B  ( (
(  ._|_  `  x )  e.  B  /\  (  ._|_  `  (  ._|_  `  x
) )  =  x  /\  ( x  .<_  y  ->  (  ._|_  `  y
)  .<_  (  ._|_  `  x
) ) )  /\  ( x  .\/  (  ._|_  `  x ) )  =  .1.  /\  ( x 
./\  (  ._|_  `  x
) )  =  .0.  ) )
12 fveq2 5696 . . . . . . 7  |-  ( x  =  X  ->  (  ._|_  `  x )  =  (  ._|_  `  X ) )
1312eleq1d 2509 . . . . . 6  |-  ( x  =  X  ->  (
(  ._|_  `  x )  e.  B  <->  (  ._|_  `  X
)  e.  B ) )
1412fveq2d 5700 . . . . . . 7  |-  ( x  =  X  ->  (  ._|_  `  (  ._|_  `  x
) )  =  ( 
._|_  `  (  ._|_  `  X
) ) )
15 id 22 . . . . . . 7  |-  ( x  =  X  ->  x  =  X )
1614, 15eqeq12d 2457 . . . . . 6  |-  ( x  =  X  ->  (
(  ._|_  `  (  ._|_  `  x ) )  =  x  <->  (  ._|_  `  (  ._|_  `  X ) )  =  X ) )
17 breq1 4300 . . . . . . 7  |-  ( x  =  X  ->  (
x  .<_  y  <->  X  .<_  y ) )
1812breq2d 4309 . . . . . . 7  |-  ( x  =  X  ->  (
(  ._|_  `  y )  .<_  (  ._|_  `  x )  <-> 
(  ._|_  `  y )  .<_  (  ._|_  `  X ) ) )
1917, 18imbi12d 320 . . . . . 6  |-  ( x  =  X  ->  (
( x  .<_  y  -> 
(  ._|_  `  y )  .<_  (  ._|_  `  x ) )  <->  ( X  .<_  y  ->  (  ._|_  `  y
)  .<_  (  ._|_  `  X
) ) ) )
2013, 16, 193anbi123d 1289 . . . . 5  |-  ( x  =  X  ->  (
( (  ._|_  `  x
)  e.  B  /\  (  ._|_  `  (  ._|_  `  x ) )  =  x  /\  ( x 
.<_  y  ->  (  ._|_  `  y )  .<_  (  ._|_  `  x ) ) )  <-> 
( (  ._|_  `  X
)  e.  B  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  ( X 
.<_  y  ->  (  ._|_  `  y )  .<_  (  ._|_  `  X ) ) ) ) )
2115, 12oveq12d 6114 . . . . . 6  |-  ( x  =  X  ->  (
x  .\/  (  ._|_  `  x ) )  =  ( X  .\/  (  ._|_  `  X ) ) )
2221eqeq1d 2451 . . . . 5  |-  ( x  =  X  ->  (
( x  .\/  (  ._|_  `  x ) )  =  .1.  <->  ( X  .\/  (  ._|_  `  X
) )  =  .1.  ) )
2315, 12oveq12d 6114 . . . . . 6  |-  ( x  =  X  ->  (
x  ./\  (  ._|_  `  x ) )  =  ( X  ./\  (  ._|_  `  X ) ) )
2423eqeq1d 2451 . . . . 5  |-  ( x  =  X  ->  (
( x  ./\  (  ._|_  `  x ) )  =  .0.  <->  ( X  ./\  (  ._|_  `  X ) )  =  .0.  )
)
2520, 22, 243anbi123d 1289 . . . 4  |-  ( x  =  X  ->  (
( ( (  ._|_  `  x )  e.  B  /\  (  ._|_  `  (  ._|_  `  x ) )  =  x  /\  (
x  .<_  y  ->  (  ._|_  `  y )  .<_  (  ._|_  `  x )
) )  /\  (
x  .\/  (  ._|_  `  x ) )  =  .1.  /\  ( x 
./\  (  ._|_  `  x
) )  =  .0.  )  <->  ( ( ( 
._|_  `  X )  e.  B  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  ( X  .<_  y  -> 
(  ._|_  `  y )  .<_  (  ._|_  `  X ) ) )  /\  ( X  .\/  (  ._|_  `  X
) )  =  .1. 
/\  ( X  ./\  (  ._|_  `  X )
)  =  .0.  )
) )
26 breq2 4301 . . . . . . 7  |-  ( y  =  Y  ->  ( X  .<_  y  <->  X  .<_  Y ) )
27 fveq2 5696 . . . . . . . 8  |-  ( y  =  Y  ->  (  ._|_  `  y )  =  (  ._|_  `  Y ) )
2827breq1d 4307 . . . . . . 7  |-  ( y  =  Y  ->  (
(  ._|_  `  y )  .<_  (  ._|_  `  X )  <-> 
(  ._|_  `  Y )  .<_  (  ._|_  `  X ) ) )
2926, 28imbi12d 320 . . . . . 6  |-  ( y  =  Y  ->  (
( X  .<_  y  -> 
(  ._|_  `  y )  .<_  (  ._|_  `  X ) )  <->  ( X  .<_  Y  ->  (  ._|_  `  Y
)  .<_  (  ._|_  `  X
) ) ) )
30293anbi3d 1295 . . . . 5  |-  ( y  =  Y  ->  (
( (  ._|_  `  X
)  e.  B  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  ( X 
.<_  y  ->  (  ._|_  `  y )  .<_  (  ._|_  `  X ) ) )  <-> 
( (  ._|_  `  X
)  e.  B  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  ( X 
.<_  Y  ->  (  ._|_  `  Y )  .<_  (  ._|_  `  X ) ) ) ) )
31303anbi1d 1293 . . . 4  |-  ( y  =  Y  ->  (
( ( (  ._|_  `  X )  e.  B  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  ( X  .<_  y  ->  (  ._|_  `  y )  .<_  (  ._|_  `  X )
) )  /\  ( X  .\/  (  ._|_  `  X
) )  =  .1. 
/\  ( X  ./\  (  ._|_  `  X )
)  =  .0.  )  <->  ( ( (  ._|_  `  X
)  e.  B  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  ( X 
.<_  Y  ->  (  ._|_  `  Y )  .<_  (  ._|_  `  X ) ) )  /\  ( X  .\/  (  ._|_  `  X )
)  =  .1.  /\  ( X  ./\  (  ._|_  `  X ) )  =  .0.  ) ) )
3225, 31rspc2v 3084 . . 3  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( A. x  e.  B  A. y  e.  B  ( ( ( 
._|_  `  x )  e.  B  /\  (  ._|_  `  (  ._|_  `  x ) )  =  x  /\  ( x  .<_  y  -> 
(  ._|_  `  y )  .<_  (  ._|_  `  x ) ) )  /\  (
x  .\/  (  ._|_  `  x ) )  =  .1.  /\  ( x 
./\  (  ._|_  `  x
) )  =  .0.  )  ->  ( (
(  ._|_  `  X )  e.  B  /\  (  ._|_  `  (  ._|_  `  X
) )  =  X  /\  ( X  .<_  Y  ->  (  ._|_  `  Y
)  .<_  (  ._|_  `  X
) ) )  /\  ( X  .\/  (  ._|_  `  X ) )  =  .1.  /\  ( X 
./\  (  ._|_  `  X
) )  =  .0.  ) ) )
3311, 32mpan9 469 . 2  |-  ( ( K  e.  OP  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  (
( (  ._|_  `  X
)  e.  B  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  ( X 
.<_  Y  ->  (  ._|_  `  Y )  .<_  (  ._|_  `  X ) ) )  /\  ( X  .\/  (  ._|_  `  X )
)  =  .1.  /\  ( X  ./\  (  ._|_  `  X ) )  =  .0.  ) )
34333impb 1183 1  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( (  ._|_  `  X )  e.  B  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  ( X  .<_  Y  ->  (  ._|_  `  Y )  .<_  (  ._|_  `  X )
) )  /\  ( X  .\/  (  ._|_  `  X
) )  =  .1. 
/\  ( X  ./\  (  ._|_  `  X )
)  =  .0.  )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2720   class class class wbr 4297   dom cdm 4845   ` cfv 5423  (class class class)co 6096   Basecbs 14179   lecple 14250   occoc 14251   Posetcpo 15115   lubclub 15117   glbcglb 15118   joincjn 15119   meetcmee 15120   0.cp0 15212   1.cp1 15213   OPcops 32822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-nul 4426
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-rab 2729  df-v 2979  df-sbc 3192  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-nul 3643  df-if 3797  df-sn 3883  df-pr 3885  df-op 3889  df-uni 4097  df-br 4298  df-dm 4855  df-iota 5386  df-fv 5431  df-ov 6099  df-oposet 32826
This theorem is referenced by:  opoccl  32844  opococ  32845  oplecon3  32849  opexmid  32857  opnoncon  32858
  Copyright terms: Public domain W3C validator