MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opnsubg Structured version   Unicode version

Theorem opnsubg 19683
Description: An open subgroup of a topological group is also closed. (Contributed by Mario Carneiro, 17-Sep-2015.)
Hypothesis
Ref Expression
subgntr.h  |-  J  =  ( TopOpen `  G )
Assertion
Ref Expression
opnsubg  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  S  e.  J
)  ->  S  e.  ( Clsd `  J )
)

Proof of Theorem opnsubg
Dummy variables  x  u  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2443 . . . . 5  |-  ( Base `  G )  =  (
Base `  G )
21subgss 15687 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  ( Base `  G ) )
323ad2ant2 1010 . . 3  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  S  e.  J
)  ->  S  C_  ( Base `  G ) )
4 subgntr.h . . . . . 6  |-  J  =  ( TopOpen `  G )
54, 1tgptopon 19658 . . . . 5  |-  ( G  e.  TopGrp  ->  J  e.  (TopOn `  ( Base `  G
) ) )
653ad2ant1 1009 . . . 4  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  S  e.  J
)  ->  J  e.  (TopOn `  ( Base `  G
) ) )
7 toponuni 18537 . . . 4  |-  ( J  e.  (TopOn `  ( Base `  G ) )  ->  ( Base `  G
)  =  U. J
)
86, 7syl 16 . . 3  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  S  e.  J
)  ->  ( Base `  G )  =  U. J )
93, 8sseqtrd 3397 . 2  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  S  e.  J
)  ->  S  C_  U. J
)
108difeq1d 3478 . . 3  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  S  e.  J
)  ->  ( ( Base `  G )  \  S )  =  ( U. J  \  S
) )
11 df-ima 4858 . . . . . . . 8  |-  ( ( y  e.  ( Base `  G )  |->  ( x ( +g  `  G
) y ) )
" S )  =  ran  ( ( y  e.  ( Base `  G
)  |->  ( x ( +g  `  G ) y ) )  |`  S )
123adantr 465 . . . . . . . . . 10  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  S  e.  J )  /\  x  e.  ( ( Base `  G
)  \  S )
)  ->  S  C_  ( Base `  G ) )
13 resmpt 5161 . . . . . . . . . 10  |-  ( S 
C_  ( Base `  G
)  ->  ( (
y  e.  ( Base `  G )  |->  ( x ( +g  `  G
) y ) )  |`  S )  =  ( y  e.  S  |->  ( x ( +g  `  G
) y ) ) )
1412, 13syl 16 . . . . . . . . 9  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  S  e.  J )  /\  x  e.  ( ( Base `  G
)  \  S )
)  ->  ( (
y  e.  ( Base `  G )  |->  ( x ( +g  `  G
) y ) )  |`  S )  =  ( y  e.  S  |->  ( x ( +g  `  G
) y ) ) )
1514rneqd 5072 . . . . . . . 8  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  S  e.  J )  /\  x  e.  ( ( Base `  G
)  \  S )
)  ->  ran  ( ( y  e.  ( Base `  G )  |->  ( x ( +g  `  G
) y ) )  |`  S )  =  ran  ( y  e.  S  |->  ( x ( +g  `  G ) y ) ) )
1611, 15syl5eq 2487 . . . . . . 7  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  S  e.  J )  /\  x  e.  ( ( Base `  G
)  \  S )
)  ->  ( (
y  e.  ( Base `  G )  |->  ( x ( +g  `  G
) y ) )
" S )  =  ran  ( y  e.  S  |->  ( x ( +g  `  G ) y ) ) )
17 simpl1 991 . . . . . . . . 9  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  S  e.  J )  /\  x  e.  ( ( Base `  G
)  \  S )
)  ->  G  e.  TopGrp )
18 eldifi 3483 . . . . . . . . . 10  |-  ( x  e.  ( ( Base `  G )  \  S
)  ->  x  e.  ( Base `  G )
)
1918adantl 466 . . . . . . . . 9  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  S  e.  J )  /\  x  e.  ( ( Base `  G
)  \  S )
)  ->  x  e.  ( Base `  G )
)
20 eqid 2443 . . . . . . . . . 10  |-  ( y  e.  ( Base `  G
)  |->  ( x ( +g  `  G ) y ) )  =  ( y  e.  (
Base `  G )  |->  ( x ( +g  `  G ) y ) )
21 eqid 2443 . . . . . . . . . 10  |-  ( +g  `  G )  =  ( +g  `  G )
2220, 1, 21, 4tgplacthmeo 19679 . . . . . . . . 9  |-  ( ( G  e.  TopGrp  /\  x  e.  ( Base `  G
) )  ->  (
y  e.  ( Base `  G )  |->  ( x ( +g  `  G
) y ) )  e.  ( J Homeo J ) )
2317, 19, 22syl2anc 661 . . . . . . . 8  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  S  e.  J )  /\  x  e.  ( ( Base `  G
)  \  S )
)  ->  ( y  e.  ( Base `  G
)  |->  ( x ( +g  `  G ) y ) )  e.  ( J Homeo J ) )
24 simpl3 993 . . . . . . . 8  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  S  e.  J )  /\  x  e.  ( ( Base `  G
)  \  S )
)  ->  S  e.  J )
25 hmeoima 19343 . . . . . . . 8  |-  ( ( ( y  e.  (
Base `  G )  |->  ( x ( +g  `  G ) y ) )  e.  ( J
Homeo J )  /\  S  e.  J )  ->  (
( y  e.  (
Base `  G )  |->  ( x ( +g  `  G ) y ) ) " S )  e.  J )
2623, 24, 25syl2anc 661 . . . . . . 7  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  S  e.  J )  /\  x  e.  ( ( Base `  G
)  \  S )
)  ->  ( (
y  e.  ( Base `  G )  |->  ( x ( +g  `  G
) y ) )
" S )  e.  J )
2716, 26eqeltrrd 2518 . . . . . 6  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  S  e.  J )  /\  x  e.  ( ( Base `  G
)  \  S )
)  ->  ran  ( y  e.  S  |->  ( x ( +g  `  G
) y ) )  e.  J )
28 tgpgrp 19654 . . . . . . . . 9  |-  ( G  e.  TopGrp  ->  G  e.  Grp )
2917, 28syl 16 . . . . . . . 8  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  S  e.  J )  /\  x  e.  ( ( Base `  G
)  \  S )
)  ->  G  e.  Grp )
30 eqid 2443 . . . . . . . . 9  |-  ( 0g
`  G )  =  ( 0g `  G
)
311, 21, 30grprid 15574 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  x  e.  ( Base `  G ) )  -> 
( x ( +g  `  G ) ( 0g
`  G ) )  =  x )
3229, 19, 31syl2anc 661 . . . . . . 7  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  S  e.  J )  /\  x  e.  ( ( Base `  G
)  \  S )
)  ->  ( x
( +g  `  G ) ( 0g `  G
) )  =  x )
33 simpl2 992 . . . . . . . . 9  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  S  e.  J )  /\  x  e.  ( ( Base `  G
)  \  S )
)  ->  S  e.  (SubGrp `  G ) )
3430subg0cl 15694 . . . . . . . . 9  |-  ( S  e.  (SubGrp `  G
)  ->  ( 0g `  G )  e.  S
)
3533, 34syl 16 . . . . . . . 8  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  S  e.  J )  /\  x  e.  ( ( Base `  G
)  \  S )
)  ->  ( 0g `  G )  e.  S
)
36 ovex 6121 . . . . . . . 8  |-  ( x ( +g  `  G
) ( 0g `  G ) )  e. 
_V
37 eqid 2443 . . . . . . . . 9  |-  ( y  e.  S  |->  ( x ( +g  `  G
) y ) )  =  ( y  e.  S  |->  ( x ( +g  `  G ) y ) )
38 oveq2 6104 . . . . . . . . 9  |-  ( y  =  ( 0g `  G )  ->  (
x ( +g  `  G
) y )  =  ( x ( +g  `  G ) ( 0g
`  G ) ) )
3937, 38elrnmpt1s 5092 . . . . . . . 8  |-  ( ( ( 0g `  G
)  e.  S  /\  ( x ( +g  `  G ) ( 0g
`  G ) )  e.  _V )  -> 
( x ( +g  `  G ) ( 0g
`  G ) )  e.  ran  ( y  e.  S  |->  ( x ( +g  `  G
) y ) ) )
4035, 36, 39sylancl 662 . . . . . . 7  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  S  e.  J )  /\  x  e.  ( ( Base `  G
)  \  S )
)  ->  ( x
( +g  `  G ) ( 0g `  G
) )  e.  ran  ( y  e.  S  |->  ( x ( +g  `  G ) y ) ) )
4132, 40eqeltrrd 2518 . . . . . 6  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  S  e.  J )  /\  x  e.  ( ( Base `  G
)  \  S )
)  ->  x  e.  ran  ( y  e.  S  |->  ( x ( +g  `  G ) y ) ) )
4229adantr 465 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (SubGrp `  G )  /\  S  e.  J )  /\  x  e.  ( ( Base `  G
)  \  S )
)  /\  y  e.  S )  ->  G  e.  Grp )
4319adantr 465 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (SubGrp `  G )  /\  S  e.  J )  /\  x  e.  ( ( Base `  G
)  \  S )
)  /\  y  e.  S )  ->  x  e.  ( Base `  G
) )
4412sselda 3361 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (SubGrp `  G )  /\  S  e.  J )  /\  x  e.  ( ( Base `  G
)  \  S )
)  /\  y  e.  S )  ->  y  e.  ( Base `  G
) )
451, 21grpcl 15556 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  ->  (
x ( +g  `  G
) y )  e.  ( Base `  G
) )
4642, 43, 44, 45syl3anc 1218 . . . . . . . . 9  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (SubGrp `  G )  /\  S  e.  J )  /\  x  e.  ( ( Base `  G
)  \  S )
)  /\  y  e.  S )  ->  (
x ( +g  `  G
) y )  e.  ( Base `  G
) )
47 eldifn 3484 . . . . . . . . . . 11  |-  ( x  e.  ( ( Base `  G )  \  S
)  ->  -.  x  e.  S )
4847ad2antlr 726 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (SubGrp `  G )  /\  S  e.  J )  /\  x  e.  ( ( Base `  G
)  \  S )
)  /\  y  e.  S )  ->  -.  x  e.  S )
49 eqid 2443 . . . . . . . . . . . . . . 15  |-  ( -g `  G )  =  (
-g `  G )
5049subgsubcl 15697 . . . . . . . . . . . . . 14  |-  ( ( S  e.  (SubGrp `  G )  /\  (
x ( +g  `  G
) y )  e.  S  /\  y  e.  S )  ->  (
( x ( +g  `  G ) y ) ( -g `  G
) y )  e.  S )
51503com23 1193 . . . . . . . . . . . . 13  |-  ( ( S  e.  (SubGrp `  G )  /\  y  e.  S  /\  (
x ( +g  `  G
) y )  e.  S )  ->  (
( x ( +g  `  G ) y ) ( -g `  G
) y )  e.  S )
52513expia 1189 . . . . . . . . . . . 12  |-  ( ( S  e.  (SubGrp `  G )  /\  y  e.  S )  ->  (
( x ( +g  `  G ) y )  e.  S  ->  (
( x ( +g  `  G ) y ) ( -g `  G
) y )  e.  S ) )
5333, 52sylan 471 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (SubGrp `  G )  /\  S  e.  J )  /\  x  e.  ( ( Base `  G
)  \  S )
)  /\  y  e.  S )  ->  (
( x ( +g  `  G ) y )  e.  S  ->  (
( x ( +g  `  G ) y ) ( -g `  G
) y )  e.  S ) )
541, 21, 49grppncan 15621 . . . . . . . . . . . . 13  |-  ( ( G  e.  Grp  /\  x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  ->  (
( x ( +g  `  G ) y ) ( -g `  G
) y )  =  x )
5542, 43, 44, 54syl3anc 1218 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (SubGrp `  G )  /\  S  e.  J )  /\  x  e.  ( ( Base `  G
)  \  S )
)  /\  y  e.  S )  ->  (
( x ( +g  `  G ) y ) ( -g `  G
) y )  =  x )
5655eleq1d 2509 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (SubGrp `  G )  /\  S  e.  J )  /\  x  e.  ( ( Base `  G
)  \  S )
)  /\  y  e.  S )  ->  (
( ( x ( +g  `  G ) y ) ( -g `  G ) y )  e.  S  <->  x  e.  S ) )
5753, 56sylibd 214 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (SubGrp `  G )  /\  S  e.  J )  /\  x  e.  ( ( Base `  G
)  \  S )
)  /\  y  e.  S )  ->  (
( x ( +g  `  G ) y )  e.  S  ->  x  e.  S ) )
5848, 57mtod 177 . . . . . . . . 9  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (SubGrp `  G )  /\  S  e.  J )  /\  x  e.  ( ( Base `  G
)  \  S )
)  /\  y  e.  S )  ->  -.  ( x ( +g  `  G ) y )  e.  S )
5946, 58eldifd 3344 . . . . . . . 8  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (SubGrp `  G )  /\  S  e.  J )  /\  x  e.  ( ( Base `  G
)  \  S )
)  /\  y  e.  S )  ->  (
x ( +g  `  G
) y )  e.  ( ( Base `  G
)  \  S )
)
6059, 37fmptd 5872 . . . . . . 7  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  S  e.  J )  /\  x  e.  ( ( Base `  G
)  \  S )
)  ->  ( y  e.  S  |->  ( x ( +g  `  G
) y ) ) : S --> ( (
Base `  G )  \  S ) )
61 frn 5570 . . . . . . 7  |-  ( ( y  e.  S  |->  ( x ( +g  `  G
) y ) ) : S --> ( (
Base `  G )  \  S )  ->  ran  ( y  e.  S  |->  ( x ( +g  `  G ) y ) )  C_  ( ( Base `  G )  \  S ) )
6260, 61syl 16 . . . . . 6  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  S  e.  J )  /\  x  e.  ( ( Base `  G
)  \  S )
)  ->  ran  ( y  e.  S  |->  ( x ( +g  `  G
) y ) ) 
C_  ( ( Base `  G )  \  S
) )
63 eleq2 2504 . . . . . . . 8  |-  ( u  =  ran  ( y  e.  S  |->  ( x ( +g  `  G
) y ) )  ->  ( x  e.  u  <->  x  e.  ran  ( y  e.  S  |->  ( x ( +g  `  G ) y ) ) ) )
64 sseq1 3382 . . . . . . . 8  |-  ( u  =  ran  ( y  e.  S  |->  ( x ( +g  `  G
) y ) )  ->  ( u  C_  ( ( Base `  G
)  \  S )  <->  ran  ( y  e.  S  |->  ( x ( +g  `  G ) y ) )  C_  ( ( Base `  G )  \  S ) ) )
6563, 64anbi12d 710 . . . . . . 7  |-  ( u  =  ran  ( y  e.  S  |->  ( x ( +g  `  G
) y ) )  ->  ( ( x  e.  u  /\  u  C_  ( ( Base `  G
)  \  S )
)  <->  ( x  e. 
ran  ( y  e.  S  |->  ( x ( +g  `  G ) y ) )  /\  ran  ( y  e.  S  |->  ( x ( +g  `  G ) y ) )  C_  ( ( Base `  G )  \  S ) ) ) )
6665rspcev 3078 . . . . . 6  |-  ( ( ran  ( y  e.  S  |->  ( x ( +g  `  G ) y ) )  e.  J  /\  ( x  e.  ran  ( y  e.  S  |->  ( x ( +g  `  G
) y ) )  /\  ran  ( y  e.  S  |->  ( x ( +g  `  G
) y ) ) 
C_  ( ( Base `  G )  \  S
) ) )  ->  E. u  e.  J  ( x  e.  u  /\  u  C_  ( (
Base `  G )  \  S ) ) )
6727, 41, 62, 66syl12anc 1216 . . . . 5  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  S  e.  J )  /\  x  e.  ( ( Base `  G
)  \  S )
)  ->  E. u  e.  J  ( x  e.  u  /\  u  C_  ( ( Base `  G
)  \  S )
) )
6867ralrimiva 2804 . . . 4  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  S  e.  J
)  ->  A. x  e.  ( ( Base `  G
)  \  S ) E. u  e.  J  ( x  e.  u  /\  u  C_  ( (
Base `  G )  \  S ) ) )
69 topontop 18536 . . . . . 6  |-  ( J  e.  (TopOn `  ( Base `  G ) )  ->  J  e.  Top )
706, 69syl 16 . . . . 5  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  S  e.  J
)  ->  J  e.  Top )
71 eltop2 18585 . . . . 5  |-  ( J  e.  Top  ->  (
( ( Base `  G
)  \  S )  e.  J  <->  A. x  e.  ( ( Base `  G
)  \  S ) E. u  e.  J  ( x  e.  u  /\  u  C_  ( (
Base `  G )  \  S ) ) ) )
7270, 71syl 16 . . . 4  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  S  e.  J
)  ->  ( (
( Base `  G )  \  S )  e.  J  <->  A. x  e.  ( (
Base `  G )  \  S ) E. u  e.  J  ( x  e.  u  /\  u  C_  ( ( Base `  G
)  \  S )
) ) )
7368, 72mpbird 232 . . 3  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  S  e.  J
)  ->  ( ( Base `  G )  \  S )  e.  J
)
7410, 73eqeltrrd 2518 . 2  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  S  e.  J
)  ->  ( U. J  \  S )  e.  J )
75 eqid 2443 . . . 4  |-  U. J  =  U. J
7675iscld 18636 . . 3  |-  ( J  e.  Top  ->  ( S  e.  ( Clsd `  J )  <->  ( S  C_ 
U. J  /\  ( U. J  \  S )  e.  J ) ) )
7770, 76syl 16 . 2  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  S  e.  J
)  ->  ( S  e.  ( Clsd `  J
)  <->  ( S  C_  U. J  /\  ( U. J  \  S )  e.  J ) ) )
789, 74, 77mpbir2and 913 1  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )  /\  S  e.  J
)  ->  S  e.  ( Clsd `  J )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2720   E.wrex 2721   _Vcvv 2977    \ cdif 3330    C_ wss 3333   U.cuni 4096    e. cmpt 4355   ran crn 4846    |` cres 4847   "cima 4848   -->wf 5419   ` cfv 5423  (class class class)co 6096   Basecbs 14179   +g cplusg 14243   TopOpenctopn 14365   0gc0g 14383   Grpcgrp 15415   -gcsg 15418  SubGrpcsubg 15680   Topctop 18503  TopOnctopon 18504   Clsdccld 18625   Homeochmeo 19331   TopGrpctgp 19647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-cnex 9343  ax-resscn 9344  ax-1cn 9345  ax-icn 9346  ax-addcl 9347  ax-addrcl 9348  ax-mulcl 9349  ax-mulrcl 9350  ax-mulcom 9351  ax-addass 9352  ax-mulass 9353  ax-distr 9354  ax-i2m1 9355  ax-1ne0 9356  ax-1rid 9357  ax-rnegex 9358  ax-rrecex 9359  ax-cnre 9360  ax-pre-lttri 9361  ax-pre-lttrn 9362  ax-pre-ltadd 9363  ax-pre-mulgt0 9364
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rmo 2728  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-om 6482  df-1st 6582  df-2nd 6583  df-recs 6837  df-rdg 6871  df-er 7106  df-map 7221  df-en 7316  df-dom 7317  df-sdom 7318  df-pnf 9425  df-mnf 9426  df-xr 9427  df-ltxr 9428  df-le 9429  df-sub 9602  df-neg 9603  df-nn 10328  df-2 10385  df-ndx 14182  df-slot 14183  df-base 14184  df-sets 14185  df-ress 14186  df-plusg 14256  df-0g 14385  df-topgen 14387  df-mnd 15420  df-plusf 15421  df-grp 15550  df-minusg 15551  df-sbg 15552  df-subg 15683  df-top 18508  df-bases 18510  df-topon 18511  df-topsp 18512  df-cld 18628  df-cn 18836  df-cnp 18837  df-tx 19140  df-hmeo 19333  df-tmd 19648  df-tgp 19649
This theorem is referenced by:  cldsubg  19686  tgpconcompss  19689
  Copyright terms: Public domain W3C validator