MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opnreen Structured version   Unicode version

Theorem opnreen 21068
Description: Every nonempty open set is uncountable. (Contributed by Mario Carneiro, 26-Jul-2014.) (Revised by Mario Carneiro, 20-Feb-2015.)
Assertion
Ref Expression
opnreen  |-  ( ( A  e.  ( topGen ` 
ran  (,) )  /\  A  =/=  (/) )  ->  A  ~~  ~P NN )

Proof of Theorem opnreen
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 9579 . . . . 5  |-  RR  e.  _V
2 elssuni 4275 . . . . . 6  |-  ( A  e.  ( topGen `  ran  (,) )  ->  A  C_  U. ( topGen `
 ran  (,) )
)
3 uniretop 21001 . . . . . 6  |-  RR  =  U. ( topGen `  ran  (,) )
42, 3syl6sseqr 3551 . . . . 5  |-  ( A  e.  ( topGen `  ran  (,) )  ->  A  C_  RR )
5 ssdomg 7558 . . . . 5  |-  ( RR  e.  _V  ->  ( A  C_  RR  ->  A  ~<_  RR ) )
61, 4, 5mpsyl 63 . . . 4  |-  ( A  e.  ( topGen `  ran  (,) )  ->  A  ~<_  RR )
7 rpnnen 13814 . . . 4  |-  RR  ~~  ~P NN
8 domentr 7571 . . . 4  |-  ( ( A  ~<_  RR  /\  RR  ~~  ~P NN )  ->  A  ~<_  ~P NN )
96, 7, 8sylancl 662 . . 3  |-  ( A  e.  ( topGen `  ran  (,) )  ->  A  ~<_  ~P NN )
109adantr 465 . 2  |-  ( ( A  e.  ( topGen ` 
ran  (,) )  /\  A  =/=  (/) )  ->  A  ~<_  ~P NN )
11 n0 3794 . . . 4  |-  ( A  =/=  (/)  <->  E. x  x  e.  A )
12 eqid 2467 . . . . . . . . . 10  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )
13 eqid 2467 . . . . . . . . . 10  |-  ( MetOpen `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) )  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) )
1412, 13tgioo 21033 . . . . . . . . 9  |-  ( topGen ` 
ran  (,) )  =  (
MetOpen `  ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) )
1514eleq2i 2545 . . . . . . . 8  |-  ( A  e.  ( topGen `  ran  (,) )  <->  A  e.  ( MetOpen
`  ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) ) )
1612rexmet 21028 . . . . . . . . 9  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  e.  ( *Met `  RR )
1713mopni2 20728 . . . . . . . . 9  |-  ( ( ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )  e.  ( *Met `  RR )  /\  A  e.  ( MetOpen `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) )  /\  x  e.  A )  ->  E. y  e.  RR+  ( x ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) y )  C_  A )
1816, 17mp3an1 1311 . . . . . . . 8  |-  ( ( A  e.  ( MetOpen `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) )  /\  x  e.  A )  ->  E. y  e.  RR+  ( x (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) y )  C_  A )
1915, 18sylanb 472 . . . . . . 7  |-  ( ( A  e.  ( topGen ` 
ran  (,) )  /\  x  e.  A )  ->  E. y  e.  RR+  ( x (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) y )  C_  A )
204sselda 3504 . . . . . . . . . . . 12  |-  ( ( A  e.  ( topGen ` 
ran  (,) )  /\  x  e.  A )  ->  x  e.  RR )
21 eqid 2467 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ~P NN  |->  ( y  e.  NN  |->  if ( y  e.  x ,  ( ( 1  /  3 ) ^
y ) ,  0 ) ) )  =  ( x  e.  ~P NN  |->  ( y  e.  NN  |->  if ( y  e.  x ,  ( ( 1  /  3
) ^ y ) ,  0 ) ) )
2221rpnnen2 13813 . . . . . . . . . . . . . . 15  |-  ~P NN  ~<_  ( 0 [,] 1
)
23 rphalfcl 11240 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  RR+  ->  ( y  /  2 )  e.  RR+ )
2423rpred 11252 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  RR+  ->  ( y  /  2 )  e.  RR )
25 resubcl 9879 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR  /\  ( y  /  2
)  e.  RR )  ->  ( x  -  ( y  /  2
) )  e.  RR )
2624, 25sylan2 474 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( x  -  (
y  /  2 ) )  e.  RR )
27 readdcl 9571 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR  /\  ( y  /  2
)  e.  RR )  ->  ( x  +  ( y  /  2
) )  e.  RR )
2824, 27sylan2 474 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( x  +  ( y  /  2 ) )  e.  RR )
29 simpl 457 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  ->  x  e.  RR )
30 ltsubrp 11247 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR  /\  ( y  /  2
)  e.  RR+ )  ->  ( x  -  (
y  /  2 ) )  <  x )
3123, 30sylan2 474 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( x  -  (
y  /  2 ) )  <  x )
32 ltaddrp 11248 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR  /\  ( y  /  2
)  e.  RR+ )  ->  x  <  ( x  +  ( y  / 
2 ) ) )
3323, 32sylan2 474 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  ->  x  <  ( x  +  ( y  /  2
) ) )
3426, 29, 28, 31, 33lttrd 9738 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( x  -  (
y  /  2 ) )  <  ( x  +  ( y  / 
2 ) ) )
35 iccen 11661 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  -  (
y  /  2 ) )  e.  RR  /\  ( x  +  (
y  /  2 ) )  e.  RR  /\  ( x  -  (
y  /  2 ) )  <  ( x  +  ( y  / 
2 ) ) )  ->  ( 0 [,] 1 )  ~~  (
( x  -  (
y  /  2 ) ) [,] ( x  +  ( y  / 
2 ) ) ) )
3626, 28, 34, 35syl3anc 1228 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( 0 [,] 1
)  ~~  ( (
x  -  ( y  /  2 ) ) [,] ( x  +  ( y  /  2
) ) ) )
37 domentr 7571 . . . . . . . . . . . . . . 15  |-  ( ( ~P NN  ~<_  ( 0 [,] 1 )  /\  ( 0 [,] 1
)  ~~  ( (
x  -  ( y  /  2 ) ) [,] ( x  +  ( y  /  2
) ) ) )  ->  ~P NN  ~<_  ( ( x  -  ( y  /  2 ) ) [,] ( x  +  ( y  /  2
) ) ) )
3822, 36, 37sylancr 663 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  ->  ~P NN  ~<_  ( ( x  -  ( y  / 
2 ) ) [,] ( x  +  ( y  /  2 ) ) ) )
39 ovex 6307 . . . . . . . . . . . . . . 15  |-  ( ( x  -  y ) (,) ( x  +  y ) )  e. 
_V
40 rpre 11222 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  RR+  ->  y  e.  RR )
41 resubcl 9879 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  -  y
)  e.  RR )
4240, 41sylan2 474 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( x  -  y
)  e.  RR )
4342rexrd 9639 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( x  -  y
)  e.  RR* )
44 readdcl 9571 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  +  y )  e.  RR )
4540, 44sylan2 474 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( x  +  y )  e.  RR )
4645rexrd 9639 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( x  +  y )  e.  RR* )
4729recnd 9618 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  ->  x  e.  CC )
4824adantl 466 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( y  /  2
)  e.  RR )
4948recnd 9618 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( y  /  2
)  e.  CC )
5047, 49, 49subsub4d 9957 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( ( x  -  ( y  /  2
) )  -  (
y  /  2 ) )  =  ( x  -  ( ( y  /  2 )  +  ( y  /  2
) ) ) )
5140adantl 466 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
y  e.  RR )
5251recnd 9618 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
y  e.  CC )
53522halvesd 10780 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( ( y  / 
2 )  +  ( y  /  2 ) )  =  y )
5453oveq2d 6298 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( x  -  (
( y  /  2
)  +  ( y  /  2 ) ) )  =  ( x  -  y ) )
5550, 54eqtrd 2508 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( ( x  -  ( y  /  2
) )  -  (
y  /  2 ) )  =  ( x  -  y ) )
5623adantl 466 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( y  /  2
)  e.  RR+ )
57 ltsubrp 11247 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  -  (
y  /  2 ) )  e.  RR  /\  ( y  /  2
)  e.  RR+ )  ->  ( ( x  -  ( y  /  2
) )  -  (
y  /  2 ) )  <  ( x  -  ( y  / 
2 ) ) )
5826, 56, 57syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( ( x  -  ( y  /  2
) )  -  (
y  /  2 ) )  <  ( x  -  ( y  / 
2 ) ) )
5955, 58eqbrtrrd 4469 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( x  -  y
)  <  ( x  -  ( y  / 
2 ) ) )
60 ltaddrp 11248 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  +  ( y  /  2 ) )  e.  RR  /\  ( y  /  2
)  e.  RR+ )  ->  ( x  +  ( y  /  2 ) )  <  ( ( x  +  ( y  /  2 ) )  +  ( y  / 
2 ) ) )
6128, 56, 60syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( x  +  ( y  /  2 ) )  <  ( ( x  +  ( y  /  2 ) )  +  ( y  / 
2 ) ) )
6247, 49, 49addassd 9614 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( ( x  +  ( y  /  2
) )  +  ( y  /  2 ) )  =  ( x  +  ( ( y  /  2 )  +  ( y  /  2
) ) ) )
6353oveq2d 6298 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( x  +  ( ( y  /  2
)  +  ( y  /  2 ) ) )  =  ( x  +  y ) )
6462, 63eqtrd 2508 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( ( x  +  ( y  /  2
) )  +  ( y  /  2 ) )  =  ( x  +  y ) )
6561, 64breqtrd 4471 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( x  +  ( y  /  2 ) )  <  ( x  +  y ) )
66 iccssioo 11589 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  -  y )  e.  RR*  /\  ( x  +  y )  e.  RR* )  /\  ( ( x  -  y )  <  (
x  -  ( y  /  2 ) )  /\  ( x  +  ( y  /  2
) )  <  (
x  +  y ) ) )  ->  (
( x  -  (
y  /  2 ) ) [,] ( x  +  ( y  / 
2 ) ) ) 
C_  ( ( x  -  y ) (,) ( x  +  y ) ) )
6743, 46, 59, 65, 66syl22anc 1229 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( ( x  -  ( y  /  2
) ) [,] (
x  +  ( y  /  2 ) ) )  C_  ( (
x  -  y ) (,) ( x  +  y ) ) )
68 ssdomg 7558 . . . . . . . . . . . . . . 15  |-  ( ( ( x  -  y
) (,) ( x  +  y ) )  e.  _V  ->  (
( ( x  -  ( y  /  2
) ) [,] (
x  +  ( y  /  2 ) ) )  C_  ( (
x  -  y ) (,) ( x  +  y ) )  -> 
( ( x  -  ( y  /  2
) ) [,] (
x  +  ( y  /  2 ) ) )  ~<_  ( ( x  -  y ) (,) ( x  +  y ) ) ) )
6939, 67, 68mpsyl 63 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( ( x  -  ( y  /  2
) ) [,] (
x  +  ( y  /  2 ) ) )  ~<_  ( ( x  -  y ) (,) ( x  +  y ) ) )
70 domtr 7565 . . . . . . . . . . . . . 14  |-  ( ( ~P NN  ~<_  ( ( x  -  ( y  /  2 ) ) [,] ( x  +  ( y  /  2
) ) )  /\  ( ( x  -  ( y  /  2
) ) [,] (
x  +  ( y  /  2 ) ) )  ~<_  ( ( x  -  y ) (,) ( x  +  y ) ) )  ->  ~P NN  ~<_  ( ( x  -  y ) (,) ( x  +  y ) ) )
7138, 69, 70syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  ->  ~P NN  ~<_  ( ( x  -  y ) (,) ( x  +  y ) ) )
7212bl2ioo 21029 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) y )  =  ( ( x  -  y ) (,) (
x  +  y ) ) )
7340, 72sylan2 474 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( x ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) y )  =  ( ( x  -  y ) (,) (
x  +  y ) ) )
7471, 73breqtrrd 4473 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  ->  ~P NN  ~<_  ( x (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) y ) )
7520, 74sylan 471 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
topGen `  ran  (,) )  /\  x  e.  A
)  /\  y  e.  RR+ )  ->  ~P NN  ~<_  ( x ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) y ) )
7675adantr 465 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  x  e.  A
)  /\  y  e.  RR+ )  /\  ( x ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) y )  C_  A )  ->  ~P NN  ~<_  ( x ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) y ) )
77 simplll 757 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  x  e.  A
)  /\  y  e.  RR+ )  /\  ( x ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) y )  C_  A )  ->  A  e.  ( topGen ` 
ran  (,) ) )
78 simpr 461 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  x  e.  A
)  /\  y  e.  RR+ )  /\  ( x ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) y )  C_  A )  ->  ( x ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) y )  C_  A )
79 ssdomg 7558 . . . . . . . . . . 11  |-  ( A  e.  ( topGen `  ran  (,) )  ->  ( (
x ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) y )  C_  A  ->  ( x ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) y )  ~<_  A ) )
8077, 78, 79sylc 60 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  x  e.  A
)  /\  y  e.  RR+ )  /\  ( x ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) y )  C_  A )  ->  ( x ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) y )  ~<_  A )
81 domtr 7565 . . . . . . . . . 10  |-  ( ( ~P NN  ~<_  ( x ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) y )  /\  ( x ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) y )  ~<_  A )  ->  ~P NN  ~<_  A )
8276, 80, 81syl2anc 661 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  x  e.  A
)  /\  y  e.  RR+ )  /\  ( x ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) y )  C_  A )  ->  ~P NN  ~<_  A )
8382ex 434 . . . . . . . 8  |-  ( ( ( A  e.  (
topGen `  ran  (,) )  /\  x  e.  A
)  /\  y  e.  RR+ )  ->  ( (
x ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) y )  C_  A  ->  ~P NN  ~<_  A ) )
8483rexlimdva 2955 . . . . . . 7  |-  ( ( A  e.  ( topGen ` 
ran  (,) )  /\  x  e.  A )  ->  ( E. y  e.  RR+  (
x ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) y )  C_  A  ->  ~P NN  ~<_  A ) )
8519, 84mpd 15 . . . . . 6  |-  ( ( A  e.  ( topGen ` 
ran  (,) )  /\  x  e.  A )  ->  ~P NN 
~<_  A )
8685ex 434 . . . . 5  |-  ( A  e.  ( topGen `  ran  (,) )  ->  ( x  e.  A  ->  ~P NN  ~<_  A ) )
8786exlimdv 1700 . . . 4  |-  ( A  e.  ( topGen `  ran  (,) )  ->  ( E. x  x  e.  A  ->  ~P NN  ~<_  A ) )
8811, 87syl5bi 217 . . 3  |-  ( A  e.  ( topGen `  ran  (,) )  ->  ( A  =/=  (/)  ->  ~P NN  ~<_  A ) )
8988imp 429 . 2  |-  ( ( A  e.  ( topGen ` 
ran  (,) )  /\  A  =/=  (/) )  ->  ~P NN 
~<_  A )
90 sbth 7634 . 2  |-  ( ( A  ~<_  ~P NN  /\  ~P NN 
~<_  A )  ->  A  ~~  ~P NN )
9110, 89, 90syl2anc 661 1  |-  ( ( A  e.  ( topGen ` 
ran  (,) )  /\  A  =/=  (/) )  ->  A  ~~  ~P NN )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379   E.wex 1596    e. wcel 1767    =/= wne 2662   E.wrex 2815   _Vcvv 3113    C_ wss 3476   (/)c0 3785   ifcif 3939   ~Pcpw 4010   U.cuni 4245   class class class wbr 4447    |-> cmpt 4505    X. cxp 4997   ran crn 5000    |` cres 5001    o. ccom 5003   ` cfv 5586  (class class class)co 6282    ~~ cen 7510    ~<_ cdom 7511   RRcr 9487   0cc0 9488   1c1 9489    + caddc 9491   RR*cxr 9623    < clt 9624    - cmin 9801    / cdiv 10202   NNcn 10532   2c2 10581   3c3 10582   RR+crp 11216   (,)cioo 11525   [,]cicc 11528   ^cexp 12129   abscabs 13024   topGenctg 14686   *Metcxmt 18171   ballcbl 18173   MetOpencmopn 18176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-1o 7127  df-2o 7128  df-oadd 7131  df-omul 7132  df-er 7308  df-map 7419  df-pm 7420  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-sup 7897  df-oi 7931  df-card 8316  df-acn 8319  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11079  df-q 11179  df-rp 11217  df-xneg 11314  df-xadd 11315  df-xmul 11316  df-ioo 11529  df-ico 11531  df-icc 11532  df-fz 11669  df-fzo 11789  df-fl 11893  df-seq 12071  df-exp 12130  df-hash 12368  df-cj 12889  df-re 12890  df-im 12891  df-sqrt 13025  df-abs 13026  df-limsup 13250  df-clim 13267  df-rlim 13268  df-sum 13465  df-topgen 14692  df-psmet 18179  df-xmet 18180  df-met 18181  df-bl 18182  df-mopn 18183  df-top 19163  df-bases 19165  df-topon 19166
This theorem is referenced by:  rectbntr0  21069
  Copyright terms: Public domain W3C validator