MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opnneip Structured version   Unicode version

Theorem opnneip 18745
Description: An open set is a neighborhood of any of its members. (Contributed by NM, 8-Mar-2007.)
Assertion
Ref Expression
opnneip  |-  ( ( J  e.  Top  /\  N  e.  J  /\  P  e.  N )  ->  N  e.  ( ( nei `  J ) `
 { P }
) )

Proof of Theorem opnneip
StepHypRef Expression
1 snssi 4038 . 2  |-  ( P  e.  N  ->  { P }  C_  N )
2 opnneiss 18744 . 2  |-  ( ( J  e.  Top  /\  N  e.  J  /\  { P }  C_  N
)  ->  N  e.  ( ( nei `  J
) `  { P } ) )
31, 2syl3an3 1253 1  |-  ( ( J  e.  Top  /\  N  e.  J  /\  P  e.  N )  ->  N  e.  ( ( nei `  J ) `
 { P }
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 965    e. wcel 1756    C_ wss 3349   {csn 3898   ` cfv 5439   Topctop 18520   neicnei 18723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4424  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2741  df-rex 2742  df-reu 2743  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-op 3905  df-uni 4113  df-iun 4194  df-br 4314  df-opab 4372  df-mpt 4373  df-id 4657  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-top 18525  df-nei 18724
This theorem is referenced by:  opnnei  18746  neindisj2  18749  iscnp4  18889  cnpnei  18890  hausnei2  18979  llynlly  19103  nllyrest  19112  nllyidm  19115  hausllycmp  19120  cldllycmp  19121  txnlly  19232  flimfil  19564  flimopn  19570  fbflim2  19572  hausflimlem  19574  flimcf  19577  flimsncls  19581  fclsnei  19614  fcfnei  19630  cnextcn  19661  utopreg  19849  blnei  20099  cnllycmp  20550  flimcfil  20846  limcflf  21378  rrhre  26469  cvmlift2lem12  27225
  Copyright terms: Public domain W3C validator