MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opnneip Structured version   Unicode version

Theorem opnneip 19488
Description: An open set is a neighborhood of any of its members. (Contributed by NM, 8-Mar-2007.)
Assertion
Ref Expression
opnneip  |-  ( ( J  e.  Top  /\  N  e.  J  /\  P  e.  N )  ->  N  e.  ( ( nei `  J ) `
 { P }
) )

Proof of Theorem opnneip
StepHypRef Expression
1 snssi 4177 . 2  |-  ( P  e.  N  ->  { P }  C_  N )
2 opnneiss 19487 . 2  |-  ( ( J  e.  Top  /\  N  e.  J  /\  { P }  C_  N
)  ->  N  e.  ( ( nei `  J
) `  { P } ) )
31, 2syl3an3 1263 1  |-  ( ( J  e.  Top  /\  N  e.  J  /\  P  e.  N )  ->  N  e.  ( ( nei `  J ) `
 { P }
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 973    e. wcel 1767    C_ wss 3481   {csn 4033   ` cfv 5594   Topctop 19263   neicnei 19466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-top 19268  df-nei 19467
This theorem is referenced by:  opnnei  19489  neindisj2  19492  iscnp4  19632  cnpnei  19633  hausnei2  19722  llynlly  19846  nllyrest  19855  nllyidm  19858  hausllycmp  19863  cldllycmp  19864  txnlly  20006  flimfil  20338  flimopn  20344  fbflim2  20346  hausflimlem  20348  flimcf  20351  flimsncls  20355  fclsnei  20388  fcfnei  20404  cnextcn  20435  utopreg  20623  blnei  20873  cnllycmp  21324  flimcfil  21620  limcflf  22153  rrhre  27824  cvmlift2lem12  28584
  Copyright terms: Public domain W3C validator