MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opnnei Structured version   Unicode version

Theorem opnnei 18837
Description: A set is open iff it is a neighborhood of all its points. ( Contributed by Jeff Hankins, 15-Sep-2009.) (Contributed by NM, 16-Sep-2009.)
Assertion
Ref Expression
opnnei  |-  ( J  e.  Top  ->  ( S  e.  J  <->  A. x  e.  S  S  e.  ( ( nei `  J
) `  { x } ) ) )
Distinct variable groups:    x, J    x, S

Proof of Theorem opnnei
StepHypRef Expression
1 0opn 18630 . . . . 5  |-  ( J  e.  Top  ->  (/)  e.  J
)
21adantr 465 . . . 4  |-  ( ( J  e.  Top  /\  S  =  (/) )  ->  (/) 
e.  J )
3 eleq1 2521 . . . . 5  |-  ( S  =  (/)  ->  ( S  e.  J  <->  (/)  e.  J
) )
43adantl 466 . . . 4  |-  ( ( J  e.  Top  /\  S  =  (/) )  -> 
( S  e.  J  <->  (/)  e.  J ) )
52, 4mpbird 232 . . 3  |-  ( ( J  e.  Top  /\  S  =  (/) )  ->  S  e.  J )
6 rzal 3876 . . . 4  |-  ( S  =  (/)  ->  A. x  e.  S  S  e.  ( ( nei `  J
) `  { x } ) )
76adantl 466 . . 3  |-  ( ( J  e.  Top  /\  S  =  (/) )  ->  A. x  e.  S  S  e.  ( ( nei `  J ) `  { x } ) )
85, 72thd 240 . 2  |-  ( ( J  e.  Top  /\  S  =  (/) )  -> 
( S  e.  J  <->  A. x  e.  S  S  e.  ( ( nei `  J
) `  { x } ) ) )
9 opnneip 18836 . . . . . . 7  |-  ( ( J  e.  Top  /\  S  e.  J  /\  x  e.  S )  ->  S  e.  ( ( nei `  J ) `
 { x }
) )
1093expia 1190 . . . . . 6  |-  ( ( J  e.  Top  /\  S  e.  J )  ->  ( x  e.  S  ->  S  e.  ( ( nei `  J ) `
 { x }
) ) )
1110ralrimiv 2818 . . . . 5  |-  ( ( J  e.  Top  /\  S  e.  J )  ->  A. x  e.  S  S  e.  ( ( nei `  J ) `  { x } ) )
1211ex 434 . . . 4  |-  ( J  e.  Top  ->  ( S  e.  J  ->  A. x  e.  S  S  e.  ( ( nei `  J
) `  { x } ) ) )
1312adantr 465 . . 3  |-  ( ( J  e.  Top  /\  -.  S  =  (/) )  -> 
( S  e.  J  ->  A. x  e.  S  S  e.  ( ( nei `  J ) `  { x } ) ) )
14 df-ne 2644 . . . . . 6  |-  ( S  =/=  (/)  <->  -.  S  =  (/) )
15 r19.2z 3864 . . . . . . 7  |-  ( ( S  =/=  (/)  /\  A. x  e.  S  S  e.  ( ( nei `  J
) `  { x } ) )  ->  E. x  e.  S  S  e.  ( ( nei `  J ) `  { x } ) )
1615ex 434 . . . . . 6  |-  ( S  =/=  (/)  ->  ( A. x  e.  S  S  e.  ( ( nei `  J
) `  { x } )  ->  E. x  e.  S  S  e.  ( ( nei `  J
) `  { x } ) ) )
1714, 16sylbir 213 . . . . 5  |-  ( -.  S  =  (/)  ->  ( A. x  e.  S  S  e.  ( ( nei `  J ) `  { x } )  ->  E. x  e.  S  S  e.  ( ( nei `  J ) `  { x } ) ) )
18 eqid 2451 . . . . . . . 8  |-  U. J  =  U. J
1918neii1 18823 . . . . . . 7  |-  ( ( J  e.  Top  /\  S  e.  ( ( nei `  J ) `  { x } ) )  ->  S  C_  U. J
)
2019ex 434 . . . . . 6  |-  ( J  e.  Top  ->  ( S  e.  ( ( nei `  J ) `  { x } )  ->  S  C_  U. J
) )
2120rexlimdvw 2937 . . . . 5  |-  ( J  e.  Top  ->  ( E. x  e.  S  S  e.  ( ( nei `  J ) `  { x } )  ->  S  C_  U. J
) )
2217, 21sylan9r 658 . . . 4  |-  ( ( J  e.  Top  /\  -.  S  =  (/) )  -> 
( A. x  e.  S  S  e.  ( ( nei `  J
) `  { x } )  ->  S  C_ 
U. J ) )
2318ntrss2 18774 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  ( ( int `  J ) `  S
)  C_  S )
2423adantr 465 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  S  C_  U. J )  /\  A. x  e.  S  { x }  C_  ( ( int `  J
) `  S )
)  ->  ( ( int `  J ) `  S )  C_  S
)
25 vex 3068 . . . . . . . . . . . . 13  |-  x  e. 
_V
2625snss 4094 . . . . . . . . . . . 12  |-  ( x  e.  ( ( int `  J ) `  S
)  <->  { x }  C_  ( ( int `  J
) `  S )
)
2726ralbii 2828 . . . . . . . . . . 11  |-  ( A. x  e.  S  x  e.  ( ( int `  J
) `  S )  <->  A. x  e.  S  {
x }  C_  (
( int `  J
) `  S )
)
28 dfss3 3441 . . . . . . . . . . . . 13  |-  ( S 
C_  ( ( int `  J ) `  S
)  <->  A. x  e.  S  x  e.  ( ( int `  J ) `  S ) )
2928biimpri 206 . . . . . . . . . . . 12  |-  ( A. x  e.  S  x  e.  ( ( int `  J
) `  S )  ->  S  C_  ( ( int `  J ) `  S ) )
3029adantl 466 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  S  C_  U. J )  /\  A. x  e.  S  x  e.  ( ( int `  J
) `  S )
)  ->  S  C_  (
( int `  J
) `  S )
)
3127, 30sylan2br 476 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  S  C_  U. J )  /\  A. x  e.  S  { x }  C_  ( ( int `  J
) `  S )
)  ->  S  C_  (
( int `  J
) `  S )
)
3224, 31eqssd 3468 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  S  C_  U. J )  /\  A. x  e.  S  { x }  C_  ( ( int `  J
) `  S )
)  ->  ( ( int `  J ) `  S )  =  S )
3332ex 434 . . . . . . . 8  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  ( A. x  e.  S  { x }  C_  ( ( int `  J ) `  S
)  ->  ( ( int `  J ) `  S )  =  S ) )
3425snss 4094 . . . . . . . . . . . 12  |-  ( x  e.  S  <->  { x }  C_  S )
35 sstr2 3458 . . . . . . . . . . . . . 14  |-  ( { x }  C_  S  ->  ( S  C_  U. J  ->  { x }  C_  U. J ) )
3635com12 31 . . . . . . . . . . . . 13  |-  ( S 
C_  U. J  ->  ( { x }  C_  S  ->  { x }  C_ 
U. J ) )
3736adantl 466 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  ( { x }  C_  S  ->  { x }  C_  U. J ) )
3834, 37syl5bi 217 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  ( x  e.  S  ->  { x }  C_  U. J ) )
3938imp 429 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  S  C_  U. J )  /\  x  e.  S
)  ->  { x }  C_  U. J )
4018neiint 18821 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  { x }  C_  U. J  /\  S  C_  U. J
)  ->  ( S  e.  ( ( nei `  J
) `  { x } )  <->  { x }  C_  ( ( int `  J ) `  S
) ) )
41403com23 1194 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  S  C_  U. J  /\  { x }  C_  U. J
)  ->  ( S  e.  ( ( nei `  J
) `  { x } )  <->  { x }  C_  ( ( int `  J ) `  S
) ) )
42413expa 1188 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  S  C_  U. J )  /\  { x }  C_ 
U. J )  -> 
( S  e.  ( ( nei `  J
) `  { x } )  <->  { x }  C_  ( ( int `  J ) `  S
) ) )
4339, 42syldan 470 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  S  C_  U. J )  /\  x  e.  S
)  ->  ( S  e.  ( ( nei `  J
) `  { x } )  <->  { x }  C_  ( ( int `  J ) `  S
) ) )
4443ralbidva 2833 . . . . . . . 8  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  ( A. x  e.  S  S  e.  ( ( nei `  J
) `  { x } )  <->  A. x  e.  S  { x }  C_  ( ( int `  J ) `  S
) ) )
4518isopn3 18783 . . . . . . . 8  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  ( S  e.  J  <->  ( ( int `  J ) `  S
)  =  S ) )
4633, 44, 453imtr4d 268 . . . . . . 7  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  ( A. x  e.  S  S  e.  ( ( nei `  J
) `  { x } )  ->  S  e.  J ) )
4746ex 434 . . . . . 6  |-  ( J  e.  Top  ->  ( S  C_  U. J  -> 
( A. x  e.  S  S  e.  ( ( nei `  J
) `  { x } )  ->  S  e.  J ) ) )
4847com23 78 . . . . 5  |-  ( J  e.  Top  ->  ( A. x  e.  S  S  e.  ( ( nei `  J ) `  { x } )  ->  ( S  C_  U. J  ->  S  e.  J ) ) )
4948adantr 465 . . . 4  |-  ( ( J  e.  Top  /\  -.  S  =  (/) )  -> 
( A. x  e.  S  S  e.  ( ( nei `  J
) `  { x } )  ->  ( S  C_  U. J  ->  S  e.  J )
) )
5022, 49mpdd 40 . . 3  |-  ( ( J  e.  Top  /\  -.  S  =  (/) )  -> 
( A. x  e.  S  S  e.  ( ( nei `  J
) `  { x } )  ->  S  e.  J ) )
5113, 50impbid 191 . 2  |-  ( ( J  e.  Top  /\  -.  S  =  (/) )  -> 
( S  e.  J  <->  A. x  e.  S  S  e.  ( ( nei `  J
) `  { x } ) ) )
528, 51pm2.61dan 789 1  |-  ( J  e.  Top  ->  ( S  e.  J  <->  A. x  e.  S  S  e.  ( ( nei `  J
) `  { x } ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758    =/= wne 2642   A.wral 2793   E.wrex 2794    C_ wss 3423   (/)c0 3732   {csn 3972   U.cuni 4186   ` cfv 5513   Topctop 18611   intcnt 18734   neicnei 18814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4498  ax-sep 4508  ax-nul 4516  ax-pow 4565  ax-pr 4626  ax-un 6469
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2599  df-ne 2644  df-ral 2798  df-rex 2799  df-reu 2800  df-rab 2802  df-v 3067  df-sbc 3282  df-csb 3384  df-dif 3426  df-un 3428  df-in 3430  df-ss 3437  df-nul 3733  df-if 3887  df-pw 3957  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4187  df-iun 4268  df-br 4388  df-opab 4446  df-mpt 4447  df-id 4731  df-xp 4941  df-rel 4942  df-cnv 4943  df-co 4944  df-dm 4945  df-rn 4946  df-res 4947  df-ima 4948  df-iota 5476  df-fun 5515  df-fn 5516  df-f 5517  df-f1 5518  df-fo 5519  df-f1o 5520  df-fv 5521  df-top 18616  df-ntr 18737  df-nei 18815
This theorem is referenced by:  neiptopreu  18850  flimcf  19668
  Copyright terms: Public domain W3C validator