Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnmbllem0 Structured version   Unicode version

Theorem opnmbllem0 30290
Description: Lemma for ismblfin 30295; could also be used to shorten proof of opnmbllem 22176. (Contributed by Brendan Leahy, 13-Jul-2018.)
Assertion
Ref Expression
opnmbllem0  |-  ( A  e.  ( topGen `  ran  (,) )  ->  U. ( [,] " { z  e. 
ran  ( x  e.  ZZ ,  y  e. 
NN0  |->  <. ( x  / 
( 2 ^ y
) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) )
>. )  |  ( [,] `  z )  C_  A } )  =  A )
Distinct variable group:    x, y, z, A

Proof of Theorem opnmbllem0
Dummy variables  n  r  s  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5848 . . . . . . . 8  |-  ( z  =  w  ->  ( [,] `  z )  =  ( [,] `  w
) )
21sseq1d 3516 . . . . . . 7  |-  ( z  =  w  ->  (
( [,] `  z
)  C_  A  <->  ( [,] `  w )  C_  A
) )
32elrab 3254 . . . . . 6  |-  ( w  e.  { z  e. 
ran  ( x  e.  ZZ ,  y  e. 
NN0  |->  <. ( x  / 
( 2 ^ y
) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) )
>. )  |  ( [,] `  z )  C_  A }  <->  ( w  e. 
ran  ( x  e.  ZZ ,  y  e. 
NN0  |->  <. ( x  / 
( 2 ^ y
) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) )
>. )  /\  ( [,] `  w )  C_  A ) )
4 simprr 755 . . . . . . 7  |-  ( ( A  e.  ( topGen ` 
ran  (,) )  /\  (
w  e.  ran  (
x  e.  ZZ , 
y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  /\  ( [,] `  w
)  C_  A )
)  ->  ( [,] `  w )  C_  A
)
5 fvex 5858 . . . . . . . 8  |-  ( [,] `  w )  e.  _V
65elpw 4005 . . . . . . 7  |-  ( ( [,] `  w )  e.  ~P A  <->  ( [,] `  w )  C_  A
)
74, 6sylibr 212 . . . . . 6  |-  ( ( A  e.  ( topGen ` 
ran  (,) )  /\  (
w  e.  ran  (
x  e.  ZZ , 
y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  /\  ( [,] `  w
)  C_  A )
)  ->  ( [,] `  w )  e.  ~P A )
83, 7sylan2b 473 . . . . 5  |-  ( ( A  e.  ( topGen ` 
ran  (,) )  /\  w  e.  { z  e.  ran  ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
)  |  ( [,] `  z )  C_  A } )  ->  ( [,] `  w )  e. 
~P A )
98ralrimiva 2868 . . . 4  |-  ( A  e.  ( topGen `  ran  (,) )  ->  A. w  e.  { z  e.  ran  ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
)  |  ( [,] `  z )  C_  A }  ( [,] `  w
)  e.  ~P A
)
10 iccf 11626 . . . . . 6  |-  [,] :
( RR*  X.  RR* ) --> ~P RR*
11 ffun 5715 . . . . . 6  |-  ( [,]
: ( RR*  X.  RR* )
--> ~P RR*  ->  Fun  [,] )
1210, 11ax-mp 5 . . . . 5  |-  Fun  [,]
13 ssrab2 3571 . . . . . . 7  |-  { z  e.  ran  ( x  e.  ZZ ,  y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  |  ( [,] `  z
)  C_  A }  C_ 
ran  ( x  e.  ZZ ,  y  e. 
NN0  |->  <. ( x  / 
( 2 ^ y
) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) )
>. )
14 oveq1 6277 . . . . . . . . . . . 12  |-  ( x  =  r  ->  (
x  /  ( 2 ^ y ) )  =  ( r  / 
( 2 ^ y
) ) )
15 oveq1 6277 . . . . . . . . . . . . 13  |-  ( x  =  r  ->  (
x  +  1 )  =  ( r  +  1 ) )
1615oveq1d 6285 . . . . . . . . . . . 12  |-  ( x  =  r  ->  (
( x  +  1 )  /  ( 2 ^ y ) )  =  ( ( r  +  1 )  / 
( 2 ^ y
) ) )
1714, 16opeq12d 4211 . . . . . . . . . . 11  |-  ( x  =  r  ->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >.  =  <. ( r  /  ( 2 ^ y ) ) ,  ( ( r  +  1 )  / 
( 2 ^ y
) ) >. )
18 oveq2 6278 . . . . . . . . . . . . 13  |-  ( y  =  s  ->  (
2 ^ y )  =  ( 2 ^ s ) )
1918oveq2d 6286 . . . . . . . . . . . 12  |-  ( y  =  s  ->  (
r  /  ( 2 ^ y ) )  =  ( r  / 
( 2 ^ s
) ) )
2018oveq2d 6286 . . . . . . . . . . . 12  |-  ( y  =  s  ->  (
( r  +  1 )  /  ( 2 ^ y ) )  =  ( ( r  +  1 )  / 
( 2 ^ s
) ) )
2119, 20opeq12d 4211 . . . . . . . . . . 11  |-  ( y  =  s  ->  <. (
r  /  ( 2 ^ y ) ) ,  ( ( r  +  1 )  / 
( 2 ^ y
) ) >.  =  <. ( r  /  ( 2 ^ s ) ) ,  ( ( r  +  1 )  / 
( 2 ^ s
) ) >. )
2217, 21cbvmpt2v 6350 . . . . . . . . . 10  |-  ( x  e.  ZZ ,  y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  =  ( r  e.  ZZ ,  s  e. 
NN0  |->  <. ( r  / 
( 2 ^ s
) ) ,  ( ( r  +  1 )  /  ( 2 ^ s ) )
>. )
2322dyadf 22166 . . . . . . . . 9  |-  ( x  e.  ZZ ,  y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. ) : ( ZZ  X.  NN0 ) --> (  <_  i^i  ( RR  X.  RR ) )
24 frn 5719 . . . . . . . . 9  |-  ( ( x  e.  ZZ , 
y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. ) : ( ZZ  X.  NN0 ) --> (  <_  i^i  ( RR  X.  RR ) )  ->  ran  ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
)  C_  (  <_  i^i  ( RR  X.  RR ) ) )
2523, 24ax-mp 5 . . . . . . . 8  |-  ran  (
x  e.  ZZ , 
y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  C_  (  <_  i^i  ( RR  X.  RR ) )
26 inss2 3705 . . . . . . . . 9  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR  X.  RR )
27 rexpssxrxp 9627 . . . . . . . . 9  |-  ( RR 
X.  RR )  C_  ( RR*  X.  RR* )
2826, 27sstri 3498 . . . . . . . 8  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR*  X.  RR* )
2925, 28sstri 3498 . . . . . . 7  |-  ran  (
x  e.  ZZ , 
y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  C_  ( RR*  X.  RR* )
3013, 29sstri 3498 . . . . . 6  |-  { z  e.  ran  ( x  e.  ZZ ,  y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  |  ( [,] `  z
)  C_  A }  C_  ( RR*  X.  RR* )
3110fdmi 5718 . . . . . 6  |-  dom  [,]  =  ( RR*  X.  RR* )
3230, 31sseqtr4i 3522 . . . . 5  |-  { z  e.  ran  ( x  e.  ZZ ,  y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  |  ( [,] `  z
)  C_  A }  C_ 
dom  [,]
33 funimass4 5899 . . . . 5  |-  ( ( Fun  [,]  /\  { z  e.  ran  ( x  e.  ZZ ,  y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  |  ( [,] `  z
)  C_  A }  C_ 
dom  [,] )  ->  (
( [,] " {
z  e.  ran  (
x  e.  ZZ , 
y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  |  ( [,] `  z
)  C_  A }
)  C_  ~P A  <->  A. w  e.  { z  e.  ran  ( x  e.  ZZ ,  y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  |  ( [,] `  z
)  C_  A } 
( [,] `  w
)  e.  ~P A
) )
3412, 32, 33mp2an 670 . . . 4  |-  ( ( [,] " { z  e.  ran  ( x  e.  ZZ ,  y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  |  ( [,] `  z
)  C_  A }
)  C_  ~P A  <->  A. w  e.  { z  e.  ran  ( x  e.  ZZ ,  y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  |  ( [,] `  z
)  C_  A } 
( [,] `  w
)  e.  ~P A
)
359, 34sylibr 212 . . 3  |-  ( A  e.  ( topGen `  ran  (,) )  ->  ( [,] " { z  e.  ran  ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
)  |  ( [,] `  z )  C_  A } )  C_  ~P A )
36 sspwuni 4404 . . 3  |-  ( ( [,] " { z  e.  ran  ( x  e.  ZZ ,  y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  |  ( [,] `  z
)  C_  A }
)  C_  ~P A  <->  U. ( [,] " {
z  e.  ran  (
x  e.  ZZ , 
y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  |  ( [,] `  z
)  C_  A }
)  C_  A )
3735, 36sylib 196 . 2  |-  ( A  e.  ( topGen `  ran  (,) )  ->  U. ( [,] " { z  e. 
ran  ( x  e.  ZZ ,  y  e. 
NN0  |->  <. ( x  / 
( 2 ^ y
) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) )
>. )  |  ( [,] `  z )  C_  A } )  C_  A
)
38 eqid 2454 . . . . . . 7  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )
3938rexmet 21462 . . . . . 6  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  e.  ( *Met `  RR )
40 eqid 2454 . . . . . . . 8  |-  ( MetOpen `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) )  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) )
4138, 40tgioo 21467 . . . . . . 7  |-  ( topGen ` 
ran  (,) )  =  (
MetOpen `  ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) )
4241mopni2 21162 . . . . . 6  |-  ( ( ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )  e.  ( *Met `  RR )  /\  A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  ->  E. r  e.  RR+  ( w (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  C_  A )
4339, 42mp3an1 1309 . . . . 5  |-  ( ( A  e.  ( topGen ` 
ran  (,) )  /\  w  e.  A )  ->  E. r  e.  RR+  ( w (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  C_  A )
44 elssuni 4264 . . . . . . . . . . 11  |-  ( A  e.  ( topGen `  ran  (,) )  ->  A  C_  U. ( topGen `
 ran  (,) )
)
45 uniretop 21435 . . . . . . . . . . 11  |-  RR  =  U. ( topGen `  ran  (,) )
4644, 45syl6sseqr 3536 . . . . . . . . . 10  |-  ( A  e.  ( topGen `  ran  (,) )  ->  A  C_  RR )
4746sselda 3489 . . . . . . . . 9  |-  ( ( A  e.  ( topGen ` 
ran  (,) )  /\  w  e.  A )  ->  w  e.  RR )
48 rpre 11227 . . . . . . . . 9  |-  ( r  e.  RR+  ->  r  e.  RR )
4938bl2ioo 21463 . . . . . . . . 9  |-  ( ( w  e.  RR  /\  r  e.  RR )  ->  ( w ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) r )  =  ( ( w  -  r ) (,) (
w  +  r ) ) )
5047, 48, 49syl2an 475 . . . . . . . 8  |-  ( ( ( A  e.  (
topGen `  ran  (,) )  /\  w  e.  A
)  /\  r  e.  RR+ )  ->  ( w
( ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  =  ( ( w  -  r ) (,) ( w  +  r ) ) )
5150sseq1d 3516 . . . . . . 7  |-  ( ( ( A  e.  (
topGen `  ran  (,) )  /\  w  e.  A
)  /\  r  e.  RR+ )  ->  ( (
w ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  C_  A  <->  ( (
w  -  r ) (,) ( w  +  r ) )  C_  A ) )
52 2re 10601 . . . . . . . . . . 11  |-  2  e.  RR
53 1lt2 10698 . . . . . . . . . . 11  |-  1  <  2
54 expnlbnd 12278 . . . . . . . . . . 11  |-  ( ( r  e.  RR+  /\  2  e.  RR  /\  1  <  2 )  ->  E. n  e.  NN  ( 1  / 
( 2 ^ n
) )  <  r
)
5552, 53, 54mp3an23 1314 . . . . . . . . . 10  |-  ( r  e.  RR+  ->  E. n  e.  NN  ( 1  / 
( 2 ^ n
) )  <  r
)
5655ad2antrl 725 . . . . . . . . 9  |-  ( ( ( A  e.  (
topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  ->  E. n  e.  NN  ( 1  /  (
2 ^ n ) )  <  r )
5747ad2antrr 723 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  w  e.  RR )
58 2nn 10689 . . . . . . . . . . . . . . . . . 18  |-  2  e.  NN
59 nnnn0 10798 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  NN  ->  n  e.  NN0 )
6059ad2antrl 725 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  n  e.  NN0 )
61 nnexpcl 12161 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2  e.  NN  /\  n  e.  NN0 )  -> 
( 2 ^ n
)  e.  NN )
6258, 60, 61sylancr 661 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( 2 ^ n )  e.  NN )
6362nnred 10546 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( 2 ^ n )  e.  RR )
6457, 63remulcld 9613 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( w  x.  ( 2 ^ n
) )  e.  RR )
65 fllelt 11915 . . . . . . . . . . . . . . 15  |-  ( ( w  x.  ( 2 ^ n ) )  e.  RR  ->  (
( |_ `  (
w  x.  ( 2 ^ n ) ) )  <_  ( w  x.  ( 2 ^ n
) )  /\  (
w  x.  ( 2 ^ n ) )  <  ( ( |_
`  ( w  x.  ( 2 ^ n
) ) )  +  1 ) ) )
6664, 65syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( ( |_ `  ( w  x.  ( 2 ^ n
) ) )  <_ 
( w  x.  (
2 ^ n ) )  /\  ( w  x.  ( 2 ^ n ) )  < 
( ( |_ `  ( w  x.  (
2 ^ n ) ) )  +  1 ) ) )
6766simpld 457 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( |_ `  ( w  x.  (
2 ^ n ) ) )  <_  (
w  x.  ( 2 ^ n ) ) )
68 reflcl 11914 . . . . . . . . . . . . . . 15  |-  ( ( w  x.  ( 2 ^ n ) )  e.  RR  ->  ( |_ `  ( w  x.  ( 2 ^ n
) ) )  e.  RR )
6964, 68syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( |_ `  ( w  x.  (
2 ^ n ) ) )  e.  RR )
7062nngt0d 10575 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  0  <  ( 2 ^ n ) )
71 ledivmul2 10417 . . . . . . . . . . . . . 14  |-  ( ( ( |_ `  (
w  x.  ( 2 ^ n ) ) )  e.  RR  /\  w  e.  RR  /\  (
( 2 ^ n
)  e.  RR  /\  0  <  ( 2 ^ n ) ) )  ->  ( ( ( |_ `  ( w  x.  ( 2 ^ n ) ) )  /  ( 2 ^ n ) )  <_  w 
<->  ( |_ `  (
w  x.  ( 2 ^ n ) ) )  <_  ( w  x.  ( 2 ^ n
) ) ) )
7269, 57, 63, 70, 71syl112anc 1230 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( (
( |_ `  (
w  x.  ( 2 ^ n ) ) )  /  ( 2 ^ n ) )  <_  w  <->  ( |_ `  ( w  x.  (
2 ^ n ) ) )  <_  (
w  x.  ( 2 ^ n ) ) ) )
7367, 72mpbird 232 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( ( |_ `  ( w  x.  ( 2 ^ n
) ) )  / 
( 2 ^ n
) )  <_  w
)
74 peano2re 9742 . . . . . . . . . . . . . . 15  |-  ( ( |_ `  ( w  x.  ( 2 ^ n ) ) )  e.  RR  ->  (
( |_ `  (
w  x.  ( 2 ^ n ) ) )  +  1 )  e.  RR )
7569, 74syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( ( |_ `  ( w  x.  ( 2 ^ n
) ) )  +  1 )  e.  RR )
7675, 62nndivred 10580 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( (
( |_ `  (
w  x.  ( 2 ^ n ) ) )  +  1 )  /  ( 2 ^ n ) )  e.  RR )
7766simprd 461 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( w  x.  ( 2 ^ n
) )  <  (
( |_ `  (
w  x.  ( 2 ^ n ) ) )  +  1 ) )
78 ltmuldiv 10411 . . . . . . . . . . . . . . 15  |-  ( ( w  e.  RR  /\  ( ( |_ `  ( w  x.  (
2 ^ n ) ) )  +  1 )  e.  RR  /\  ( ( 2 ^ n )  e.  RR  /\  0  <  ( 2 ^ n ) ) )  ->  ( (
w  x.  ( 2 ^ n ) )  <  ( ( |_
`  ( w  x.  ( 2 ^ n
) ) )  +  1 )  <->  w  <  ( ( ( |_ `  ( w  x.  (
2 ^ n ) ) )  +  1 )  /  ( 2 ^ n ) ) ) )
7957, 75, 63, 70, 78syl112anc 1230 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( (
w  x.  ( 2 ^ n ) )  <  ( ( |_
`  ( w  x.  ( 2 ^ n
) ) )  +  1 )  <->  w  <  ( ( ( |_ `  ( w  x.  (
2 ^ n ) ) )  +  1 )  /  ( 2 ^ n ) ) ) )
8077, 79mpbid 210 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  w  <  ( ( ( |_ `  ( w  x.  (
2 ^ n ) ) )  +  1 )  /  ( 2 ^ n ) ) )
8157, 76, 80ltled 9722 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  w  <_  ( ( ( |_ `  ( w  x.  (
2 ^ n ) ) )  +  1 )  /  ( 2 ^ n ) ) )
8269, 62nndivred 10580 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( ( |_ `  ( w  x.  ( 2 ^ n
) ) )  / 
( 2 ^ n
) )  e.  RR )
83 elicc2 11592 . . . . . . . . . . . . 13  |-  ( ( ( ( |_ `  ( w  x.  (
2 ^ n ) ) )  /  (
2 ^ n ) )  e.  RR  /\  ( ( ( |_
`  ( w  x.  ( 2 ^ n
) ) )  +  1 )  /  (
2 ^ n ) )  e.  RR )  ->  ( w  e.  ( ( ( |_
`  ( w  x.  ( 2 ^ n
) ) )  / 
( 2 ^ n
) ) [,] (
( ( |_ `  ( w  x.  (
2 ^ n ) ) )  +  1 )  /  ( 2 ^ n ) ) )  <->  ( w  e.  RR  /\  ( ( |_ `  ( w  x.  ( 2 ^ n ) ) )  /  ( 2 ^ n ) )  <_  w  /\  w  <_  (
( ( |_ `  ( w  x.  (
2 ^ n ) ) )  +  1 )  /  ( 2 ^ n ) ) ) ) )
8482, 76, 83syl2anc 659 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( w  e.  ( ( ( |_
`  ( w  x.  ( 2 ^ n
) ) )  / 
( 2 ^ n
) ) [,] (
( ( |_ `  ( w  x.  (
2 ^ n ) ) )  +  1 )  /  ( 2 ^ n ) ) )  <->  ( w  e.  RR  /\  ( ( |_ `  ( w  x.  ( 2 ^ n ) ) )  /  ( 2 ^ n ) )  <_  w  /\  w  <_  (
( ( |_ `  ( w  x.  (
2 ^ n ) ) )  +  1 )  /  ( 2 ^ n ) ) ) ) )
8557, 73, 81, 84mpbir3and 1177 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  w  e.  ( ( ( |_
`  ( w  x.  ( 2 ^ n
) ) )  / 
( 2 ^ n
) ) [,] (
( ( |_ `  ( w  x.  (
2 ^ n ) ) )  +  1 )  /  ( 2 ^ n ) ) ) )
8664flcld 11916 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( |_ `  ( w  x.  (
2 ^ n ) ) )  e.  ZZ )
8722dyadval 22167 . . . . . . . . . . . . . 14  |-  ( ( ( |_ `  (
w  x.  ( 2 ^ n ) ) )  e.  ZZ  /\  n  e.  NN0 )  -> 
( ( |_ `  ( w  x.  (
2 ^ n ) ) ) ( x  e.  ZZ ,  y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )
n )  =  <. ( ( |_ `  (
w  x.  ( 2 ^ n ) ) )  /  ( 2 ^ n ) ) ,  ( ( ( |_ `  ( w  x.  ( 2 ^ n ) ) )  +  1 )  / 
( 2 ^ n
) ) >. )
8886, 60, 87syl2anc 659 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( ( |_ `  ( w  x.  ( 2 ^ n
) ) ) ( x  e.  ZZ , 
y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )
n )  =  <. ( ( |_ `  (
w  x.  ( 2 ^ n ) ) )  /  ( 2 ^ n ) ) ,  ( ( ( |_ `  ( w  x.  ( 2 ^ n ) ) )  +  1 )  / 
( 2 ^ n
) ) >. )
8988fveq2d 5852 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( [,] `  ( ( |_ `  ( w  x.  (
2 ^ n ) ) ) ( x  e.  ZZ ,  y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )
n ) )  =  ( [,] `  <. ( ( |_ `  (
w  x.  ( 2 ^ n ) ) )  /  ( 2 ^ n ) ) ,  ( ( ( |_ `  ( w  x.  ( 2 ^ n ) ) )  +  1 )  / 
( 2 ^ n
) ) >. )
)
90 df-ov 6273 . . . . . . . . . . . 12  |-  ( ( ( |_ `  (
w  x.  ( 2 ^ n ) ) )  /  ( 2 ^ n ) ) [,] ( ( ( |_ `  ( w  x.  ( 2 ^ n ) ) )  +  1 )  / 
( 2 ^ n
) ) )  =  ( [,] `  <. ( ( |_ `  (
w  x.  ( 2 ^ n ) ) )  /  ( 2 ^ n ) ) ,  ( ( ( |_ `  ( w  x.  ( 2 ^ n ) ) )  +  1 )  / 
( 2 ^ n
) ) >. )
9189, 90syl6eqr 2513 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( [,] `  ( ( |_ `  ( w  x.  (
2 ^ n ) ) ) ( x  e.  ZZ ,  y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )
n ) )  =  ( ( ( |_
`  ( w  x.  ( 2 ^ n
) ) )  / 
( 2 ^ n
) ) [,] (
( ( |_ `  ( w  x.  (
2 ^ n ) ) )  +  1 )  /  ( 2 ^ n ) ) ) )
9285, 91eleqtrrd 2545 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  w  e.  ( [,] `  ( ( |_ `  ( w  x.  ( 2 ^ n ) ) ) ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
) n ) ) )
93 ffn 5713 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ , 
y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. ) : ( ZZ  X.  NN0 ) --> (  <_  i^i  ( RR  X.  RR ) )  ->  (
x  e.  ZZ , 
y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  Fn  ( ZZ  X.  NN0 ) )
9423, 93ax-mp 5 . . . . . . . . . . . . . 14  |-  ( x  e.  ZZ ,  y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  Fn  ( ZZ  X.  NN0 )
95 fnovrn 6423 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
)  Fn  ( ZZ 
X.  NN0 )  /\  ( |_ `  ( w  x.  ( 2 ^ n
) ) )  e.  ZZ  /\  n  e. 
NN0 )  ->  (
( |_ `  (
w  x.  ( 2 ^ n ) ) ) ( x  e.  ZZ ,  y  e. 
NN0  |->  <. ( x  / 
( 2 ^ y
) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) )
>. ) n )  e. 
ran  ( x  e.  ZZ ,  y  e. 
NN0  |->  <. ( x  / 
( 2 ^ y
) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) )
>. ) )
9694, 95mp3an1 1309 . . . . . . . . . . . . 13  |-  ( ( ( |_ `  (
w  x.  ( 2 ^ n ) ) )  e.  ZZ  /\  n  e.  NN0 )  -> 
( ( |_ `  ( w  x.  (
2 ^ n ) ) ) ( x  e.  ZZ ,  y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )
n )  e.  ran  ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
) )
9786, 60, 96syl2anc 659 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( ( |_ `  ( w  x.  ( 2 ^ n
) ) ) ( x  e.  ZZ , 
y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )
n )  e.  ran  ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
) )
98 simplrl 759 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  r  e.  RR+ )
9998rpred 11259 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  r  e.  RR )
10057, 99resubcld 9983 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( w  -  r )  e.  RR )
101100rexrd 9632 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( w  -  r )  e. 
RR* )
10257, 99readdcld 9612 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( w  +  r )  e.  RR )
103102rexrd 9632 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( w  +  r )  e. 
RR* )
10482, 99readdcld 9612 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( (
( |_ `  (
w  x.  ( 2 ^ n ) ) )  /  ( 2 ^ n ) )  +  r )  e.  RR )
10569recnd 9611 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( |_ `  ( w  x.  (
2 ^ n ) ) )  e.  CC )
106 1cnd 9601 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  1  e.  CC )
10763recnd 9611 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( 2 ^ n )  e.  CC )
10862nnne0d 10576 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( 2 ^ n )  =/=  0 )
109105, 106, 107, 108divdird 10354 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( (
( |_ `  (
w  x.  ( 2 ^ n ) ) )  +  1 )  /  ( 2 ^ n ) )  =  ( ( ( |_
`  ( w  x.  ( 2 ^ n
) ) )  / 
( 2 ^ n
) )  +  ( 1  /  ( 2 ^ n ) ) ) )
11062nnrecred 10577 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( 1  /  ( 2 ^ n ) )  e.  RR )
111 simprr 755 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( 1  /  ( 2 ^ n ) )  < 
r )
112110, 99, 82, 111ltadd2dd 9730 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( (
( |_ `  (
w  x.  ( 2 ^ n ) ) )  /  ( 2 ^ n ) )  +  ( 1  / 
( 2 ^ n
) ) )  < 
( ( ( |_
`  ( w  x.  ( 2 ^ n
) ) )  / 
( 2 ^ n
) )  +  r ) )
113109, 112eqbrtrd 4459 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( (
( |_ `  (
w  x.  ( 2 ^ n ) ) )  +  1 )  /  ( 2 ^ n ) )  < 
( ( ( |_
`  ( w  x.  ( 2 ^ n
) ) )  / 
( 2 ^ n
) )  +  r ) )
11457, 76, 104, 80, 113lttrd 9732 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  w  <  ( ( ( |_ `  ( w  x.  (
2 ^ n ) ) )  /  (
2 ^ n ) )  +  r ) )
11557, 99, 82ltsubaddd 10144 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( (
w  -  r )  <  ( ( |_
`  ( w  x.  ( 2 ^ n
) ) )  / 
( 2 ^ n
) )  <->  w  <  ( ( ( |_ `  ( w  x.  (
2 ^ n ) ) )  /  (
2 ^ n ) )  +  r ) ) )
116114, 115mpbird 232 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( w  -  r )  < 
( ( |_ `  ( w  x.  (
2 ^ n ) ) )  /  (
2 ^ n ) ) )
11757, 110readdcld 9612 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( w  +  ( 1  / 
( 2 ^ n
) ) )  e.  RR )
11882, 57, 110, 73leadd1dd 10162 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( (
( |_ `  (
w  x.  ( 2 ^ n ) ) )  /  ( 2 ^ n ) )  +  ( 1  / 
( 2 ^ n
) ) )  <_ 
( w  +  ( 1  /  ( 2 ^ n ) ) ) )
119109, 118eqbrtrd 4459 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( (
( |_ `  (
w  x.  ( 2 ^ n ) ) )  +  1 )  /  ( 2 ^ n ) )  <_ 
( w  +  ( 1  /  ( 2 ^ n ) ) ) )
120110, 99, 57, 111ltadd2dd 9730 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( w  +  ( 1  / 
( 2 ^ n
) ) )  < 
( w  +  r ) )
12176, 117, 102, 119, 120lelttrd 9729 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( (
( |_ `  (
w  x.  ( 2 ^ n ) ) )  +  1 )  /  ( 2 ^ n ) )  < 
( w  +  r ) )
122 iccssioo 11596 . . . . . . . . . . . . . . 15  |-  ( ( ( ( w  -  r )  e.  RR*  /\  ( w  +  r )  e.  RR* )  /\  ( ( w  -  r )  <  (
( |_ `  (
w  x.  ( 2 ^ n ) ) )  /  ( 2 ^ n ) )  /\  ( ( ( |_ `  ( w  x.  ( 2 ^ n ) ) )  +  1 )  / 
( 2 ^ n
) )  <  (
w  +  r ) ) )  ->  (
( ( |_ `  ( w  x.  (
2 ^ n ) ) )  /  (
2 ^ n ) ) [,] ( ( ( |_ `  (
w  x.  ( 2 ^ n ) ) )  +  1 )  /  ( 2 ^ n ) ) ) 
C_  ( ( w  -  r ) (,) ( w  +  r ) ) )
123101, 103, 116, 121, 122syl22anc 1227 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( (
( |_ `  (
w  x.  ( 2 ^ n ) ) )  /  ( 2 ^ n ) ) [,] ( ( ( |_ `  ( w  x.  ( 2 ^ n ) ) )  +  1 )  / 
( 2 ^ n
) ) )  C_  ( ( w  -  r ) (,) (
w  +  r ) ) )
12491, 123eqsstrd 3523 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( [,] `  ( ( |_ `  ( w  x.  (
2 ^ n ) ) ) ( x  e.  ZZ ,  y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )
n ) )  C_  ( ( w  -  r ) (,) (
w  +  r ) ) )
125 simplrr 760 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( (
w  -  r ) (,) ( w  +  r ) )  C_  A )
126124, 125sstrd 3499 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( [,] `  ( ( |_ `  ( w  x.  (
2 ^ n ) ) ) ( x  e.  ZZ ,  y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )
n ) )  C_  A )
127 fveq2 5848 . . . . . . . . . . . . . 14  |-  ( z  =  ( ( |_
`  ( w  x.  ( 2 ^ n
) ) ) ( x  e.  ZZ , 
y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )
n )  ->  ( [,] `  z )  =  ( [,] `  (
( |_ `  (
w  x.  ( 2 ^ n ) ) ) ( x  e.  ZZ ,  y  e. 
NN0  |->  <. ( x  / 
( 2 ^ y
) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) )
>. ) n ) ) )
128127sseq1d 3516 . . . . . . . . . . . . 13  |-  ( z  =  ( ( |_
`  ( w  x.  ( 2 ^ n
) ) ) ( x  e.  ZZ , 
y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )
n )  ->  (
( [,] `  z
)  C_  A  <->  ( [,] `  ( ( |_ `  ( w  x.  (
2 ^ n ) ) ) ( x  e.  ZZ ,  y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )
n ) )  C_  A ) )
129128elrab 3254 . . . . . . . . . . . 12  |-  ( ( ( |_ `  (
w  x.  ( 2 ^ n ) ) ) ( x  e.  ZZ ,  y  e. 
NN0  |->  <. ( x  / 
( 2 ^ y
) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) )
>. ) n )  e. 
{ z  e.  ran  ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
)  |  ( [,] `  z )  C_  A } 
<->  ( ( ( |_
`  ( w  x.  ( 2 ^ n
) ) ) ( x  e.  ZZ , 
y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )
n )  e.  ran  ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
)  /\  ( [,] `  ( ( |_ `  ( w  x.  (
2 ^ n ) ) ) ( x  e.  ZZ ,  y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )
n ) )  C_  A ) )
13097, 126, 129sylanbrc 662 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( ( |_ `  ( w  x.  ( 2 ^ n
) ) ) ( x  e.  ZZ , 
y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )
n )  e.  {
z  e.  ran  (
x  e.  ZZ , 
y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  |  ( [,] `  z
)  C_  A }
)
131 funfvima2 6123 . . . . . . . . . . . 12  |-  ( ( Fun  [,]  /\  { z  e.  ran  ( x  e.  ZZ ,  y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  |  ( [,] `  z
)  C_  A }  C_ 
dom  [,] )  ->  (
( ( |_ `  ( w  x.  (
2 ^ n ) ) ) ( x  e.  ZZ ,  y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )
n )  e.  {
z  e.  ran  (
x  e.  ZZ , 
y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  |  ( [,] `  z
)  C_  A }  ->  ( [,] `  (
( |_ `  (
w  x.  ( 2 ^ n ) ) ) ( x  e.  ZZ ,  y  e. 
NN0  |->  <. ( x  / 
( 2 ^ y
) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) )
>. ) n ) )  e.  ( [,] " {
z  e.  ran  (
x  e.  ZZ , 
y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  |  ( [,] `  z
)  C_  A }
) ) )
13212, 32, 131mp2an 670 . . . . . . . . . . 11  |-  ( ( ( |_ `  (
w  x.  ( 2 ^ n ) ) ) ( x  e.  ZZ ,  y  e. 
NN0  |->  <. ( x  / 
( 2 ^ y
) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) )
>. ) n )  e. 
{ z  e.  ran  ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
)  |  ( [,] `  z )  C_  A }  ->  ( [,] `  (
( |_ `  (
w  x.  ( 2 ^ n ) ) ) ( x  e.  ZZ ,  y  e. 
NN0  |->  <. ( x  / 
( 2 ^ y
) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) )
>. ) n ) )  e.  ( [,] " {
z  e.  ran  (
x  e.  ZZ , 
y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  |  ( [,] `  z
)  C_  A }
) )
133130, 132syl 16 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( [,] `  ( ( |_ `  ( w  x.  (
2 ^ n ) ) ) ( x  e.  ZZ ,  y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )
n ) )  e.  ( [,] " {
z  e.  ran  (
x  e.  ZZ , 
y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  |  ( [,] `  z
)  C_  A }
) )
134 elunii 4240 . . . . . . . . . 10  |-  ( ( w  e.  ( [,] `  ( ( |_ `  ( w  x.  (
2 ^ n ) ) ) ( x  e.  ZZ ,  y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )
n ) )  /\  ( [,] `  ( ( |_ `  ( w  x.  ( 2 ^ n ) ) ) ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
) n ) )  e.  ( [,] " {
z  e.  ran  (
x  e.  ZZ , 
y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  |  ( [,] `  z
)  C_  A }
) )  ->  w  e.  U. ( [,] " {
z  e.  ran  (
x  e.  ZZ , 
y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  |  ( [,] `  z
)  C_  A }
) )
13592, 133, 134syl2anc 659 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  w  e.  U. ( [,] " {
z  e.  ran  (
x  e.  ZZ , 
y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  |  ( [,] `  z
)  C_  A }
) )
13656, 135rexlimddv 2950 . . . . . . . 8  |-  ( ( ( A  e.  (
topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  ->  w  e.  U. ( [,] " { z  e. 
ran  ( x  e.  ZZ ,  y  e. 
NN0  |->  <. ( x  / 
( 2 ^ y
) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) )
>. )  |  ( [,] `  z )  C_  A } ) )
137136expr 613 . . . . . . 7  |-  ( ( ( A  e.  (
topGen `  ran  (,) )  /\  w  e.  A
)  /\  r  e.  RR+ )  ->  ( (
( w  -  r
) (,) ( w  +  r ) ) 
C_  A  ->  w  e.  U. ( [,] " {
z  e.  ran  (
x  e.  ZZ , 
y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  |  ( [,] `  z
)  C_  A }
) ) )
13851, 137sylbid 215 . . . . . 6  |-  ( ( ( A  e.  (
topGen `  ran  (,) )  /\  w  e.  A
)  /\  r  e.  RR+ )  ->  ( (
w ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  C_  A  ->  w  e.  U. ( [,] " { z  e.  ran  ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
)  |  ( [,] `  z )  C_  A } ) ) )
139138rexlimdva 2946 . . . . 5  |-  ( ( A  e.  ( topGen ` 
ran  (,) )  /\  w  e.  A )  ->  ( E. r  e.  RR+  (
w ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  C_  A  ->  w  e.  U. ( [,] " { z  e.  ran  ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
)  |  ( [,] `  z )  C_  A } ) ) )
14043, 139mpd 15 . . . 4  |-  ( ( A  e.  ( topGen ` 
ran  (,) )  /\  w  e.  A )  ->  w  e.  U. ( [,] " {
z  e.  ran  (
x  e.  ZZ , 
y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  |  ( [,] `  z
)  C_  A }
) )
141140ex 432 . . 3  |-  ( A  e.  ( topGen `  ran  (,) )  ->  ( w  e.  A  ->  w  e. 
U. ( [,] " {
z  e.  ran  (
x  e.  ZZ , 
y  e.  NN0  |->  <. (
x  /  ( 2 ^ y ) ) ,  ( ( x  +  1 )  / 
( 2 ^ y
) ) >. )  |  ( [,] `  z
)  C_  A }
) ) )
142141ssrdv 3495 . 2  |-  ( A  e.  ( topGen `  ran  (,) )  ->  A  C_  U. ( [,] " { z  e. 
ran  ( x  e.  ZZ ,  y  e. 
NN0  |->  <. ( x  / 
( 2 ^ y
) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) )
>. )  |  ( [,] `  z )  C_  A } ) )
14337, 142eqssd 3506 1  |-  ( A  e.  ( topGen `  ran  (,) )  ->  U. ( [,] " { z  e. 
ran  ( x  e.  ZZ ,  y  e. 
NN0  |->  <. ( x  / 
( 2 ^ y
) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) )
>. )  |  ( [,] `  z )  C_  A } )  =  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823   A.wral 2804   E.wrex 2805   {crab 2808    i^i cin 3460    C_ wss 3461   ~Pcpw 3999   <.cop 4022   U.cuni 4235   class class class wbr 4439    X. cxp 4986   dom cdm 4988   ran crn 4989    |` cres 4990   "cima 4991    o. ccom 4992   Fun wfun 5564    Fn wfn 5565   -->wf 5566   ` cfv 5570  (class class class)co 6270    |-> cmpt2 6272   RRcr 9480   0cc0 9481   1c1 9482    + caddc 9484    x. cmul 9486   RR*cxr 9616    < clt 9617    <_ cle 9618    - cmin 9796    / cdiv 10202   NNcn 10531   2c2 10581   NN0cn0 10791   ZZcz 10860   RR+crp 11221   (,)cioo 11532   [,]cicc 11535   |_cfl 11908   ^cexp 12148   abscabs 13149   topGenctg 14927   *Metcxmt 18598   ballcbl 18600   MetOpencmopn 18603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-er 7303  df-map 7414  df-en 7510  df-dom 7511  df-sdom 7512  df-sup 7893  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11083  df-q 11184  df-rp 11222  df-xneg 11321  df-xadd 11322  df-xmul 11323  df-ioo 11536  df-icc 11539  df-fl 11910  df-seq 12090  df-exp 12149  df-cj 13014  df-re 13015  df-im 13016  df-sqrt 13150  df-abs 13151  df-topgen 14933  df-psmet 18606  df-xmet 18607  df-met 18608  df-bl 18609  df-mopn 18610  df-top 19566  df-bases 19568  df-topon 19569
This theorem is referenced by:  mblfinlem1  30291  mblfinlem2  30292
  Copyright terms: Public domain W3C validator