MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opnmbllem Structured version   Visualization version   Unicode version

Theorem opnmbllem 22559
Description: Lemma for opnmbl 22560. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypothesis
Ref Expression
dyadmbl.1  |-  F  =  ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
)
Assertion
Ref Expression
opnmbllem  |-  ( A  e.  ( topGen `  ran  (,) )  ->  A  e.  dom  vol )
Distinct variable groups:    x, y, A    x, F, y

Proof of Theorem opnmbllem
Dummy variables  c 
a  b  n  w  z  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5865 . . . . . . . . 9  |-  ( z  =  w  ->  ( [,] `  z )  =  ( [,] `  w
) )
21sseq1d 3459 . . . . . . . 8  |-  ( z  =  w  ->  (
( [,] `  z
)  C_  A  <->  ( [,] `  w )  C_  A
) )
32elrab 3196 . . . . . . 7  |-  ( w  e.  { z  e. 
ran  F  |  ( [,] `  z )  C_  A }  <->  ( w  e. 
ran  F  /\  ( [,] `  w )  C_  A ) )
4 simprr 766 . . . . . . . 8  |-  ( ( A  e.  ( topGen ` 
ran  (,) )  /\  (
w  e.  ran  F  /\  ( [,] `  w
)  C_  A )
)  ->  ( [,] `  w )  C_  A
)
5 fvex 5875 . . . . . . . . 9  |-  ( [,] `  w )  e.  _V
65elpw 3957 . . . . . . . 8  |-  ( ( [,] `  w )  e.  ~P A  <->  ( [,] `  w )  C_  A
)
74, 6sylibr 216 . . . . . . 7  |-  ( ( A  e.  ( topGen ` 
ran  (,) )  /\  (
w  e.  ran  F  /\  ( [,] `  w
)  C_  A )
)  ->  ( [,] `  w )  e.  ~P A )
83, 7sylan2b 478 . . . . . 6  |-  ( ( A  e.  ( topGen ` 
ran  (,) )  /\  w  e.  { z  e.  ran  F  |  ( [,] `  z
)  C_  A }
)  ->  ( [,] `  w )  e.  ~P A )
98ralrimiva 2802 . . . . 5  |-  ( A  e.  ( topGen `  ran  (,) )  ->  A. w  e.  { z  e.  ran  F  |  ( [,] `  z
)  C_  A } 
( [,] `  w
)  e.  ~P A
)
10 iccf 11733 . . . . . . 7  |-  [,] :
( RR*  X.  RR* ) --> ~P RR*
11 ffun 5731 . . . . . . 7  |-  ( [,]
: ( RR*  X.  RR* )
--> ~P RR*  ->  Fun  [,] )
1210, 11ax-mp 5 . . . . . 6  |-  Fun  [,]
13 ssrab2 3514 . . . . . . . 8  |-  { z  e.  ran  F  | 
( [,] `  z
)  C_  A }  C_ 
ran  F
14 dyadmbl.1 . . . . . . . . . . 11  |-  F  =  ( x  e.  ZZ ,  y  e.  NN0  |->  <. ( x  /  (
2 ^ y ) ) ,  ( ( x  +  1 )  /  ( 2 ^ y ) ) >.
)
1514dyadf 22549 . . . . . . . . . 10  |-  F :
( ZZ  X.  NN0 )
--> (  <_  i^i  ( RR  X.  RR ) )
16 frn 5735 . . . . . . . . . 10  |-  ( F : ( ZZ  X.  NN0 ) --> (  <_  i^i  ( RR  X.  RR ) )  ->  ran  F 
C_  (  <_  i^i  ( RR  X.  RR ) ) )
1715, 16ax-mp 5 . . . . . . . . 9  |-  ran  F  C_  (  <_  i^i  ( RR  X.  RR ) )
18 inss2 3653 . . . . . . . . . 10  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR  X.  RR )
19 rexpssxrxp 9685 . . . . . . . . . 10  |-  ( RR 
X.  RR )  C_  ( RR*  X.  RR* )
2018, 19sstri 3441 . . . . . . . . 9  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR*  X.  RR* )
2117, 20sstri 3441 . . . . . . . 8  |-  ran  F  C_  ( RR*  X.  RR* )
2213, 21sstri 3441 . . . . . . 7  |-  { z  e.  ran  F  | 
( [,] `  z
)  C_  A }  C_  ( RR*  X.  RR* )
2310fdmi 5734 . . . . . . 7  |-  dom  [,]  =  ( RR*  X.  RR* )
2422, 23sseqtr4i 3465 . . . . . 6  |-  { z  e.  ran  F  | 
( [,] `  z
)  C_  A }  C_ 
dom  [,]
25 funimass4 5916 . . . . . 6  |-  ( ( Fun  [,]  /\  { z  e.  ran  F  | 
( [,] `  z
)  C_  A }  C_ 
dom  [,] )  ->  (
( [,] " {
z  e.  ran  F  |  ( [,] `  z
)  C_  A }
)  C_  ~P A  <->  A. w  e.  { z  e.  ran  F  | 
( [,] `  z
)  C_  A } 
( [,] `  w
)  e.  ~P A
) )
2612, 24, 25mp2an 678 . . . . 5  |-  ( ( [,] " { z  e.  ran  F  | 
( [,] `  z
)  C_  A }
)  C_  ~P A  <->  A. w  e.  { z  e.  ran  F  | 
( [,] `  z
)  C_  A } 
( [,] `  w
)  e.  ~P A
)
279, 26sylibr 216 . . . 4  |-  ( A  e.  ( topGen `  ran  (,) )  ->  ( [,] " { z  e.  ran  F  |  ( [,] `  z
)  C_  A }
)  C_  ~P A
)
28 sspwuni 4367 . . . 4  |-  ( ( [,] " { z  e.  ran  F  | 
( [,] `  z
)  C_  A }
)  C_  ~P A  <->  U. ( [,] " {
z  e.  ran  F  |  ( [,] `  z
)  C_  A }
)  C_  A )
2927, 28sylib 200 . . 3  |-  ( A  e.  ( topGen `  ran  (,) )  ->  U. ( [,] " { z  e. 
ran  F  |  ( [,] `  z )  C_  A } )  C_  A
)
30 eqid 2451 . . . . . . . 8  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )
3130rexmet 21809 . . . . . . 7  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  e.  ( *Met `  RR )
32 eqid 2451 . . . . . . . . 9  |-  ( MetOpen `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) )  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) )
3330, 32tgioo 21814 . . . . . . . 8  |-  ( topGen ` 
ran  (,) )  =  (
MetOpen `  ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) )
3433mopni2 21508 . . . . . . 7  |-  ( ( ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )  e.  ( *Met `  RR )  /\  A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  ->  E. r  e.  RR+  ( w (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  C_  A )
3531, 34mp3an1 1351 . . . . . 6  |-  ( ( A  e.  ( topGen ` 
ran  (,) )  /\  w  e.  A )  ->  E. r  e.  RR+  ( w (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  C_  A )
36 elssuni 4227 . . . . . . . . . . . 12  |-  ( A  e.  ( topGen `  ran  (,) )  ->  A  C_  U. ( topGen `
 ran  (,) )
)
37 uniretop 21783 . . . . . . . . . . . 12  |-  RR  =  U. ( topGen `  ran  (,) )
3836, 37syl6sseqr 3479 . . . . . . . . . . 11  |-  ( A  e.  ( topGen `  ran  (,) )  ->  A  C_  RR )
3938sselda 3432 . . . . . . . . . 10  |-  ( ( A  e.  ( topGen ` 
ran  (,) )  /\  w  e.  A )  ->  w  e.  RR )
40 rpre 11308 . . . . . . . . . 10  |-  ( r  e.  RR+  ->  r  e.  RR )
4130bl2ioo 21810 . . . . . . . . . 10  |-  ( ( w  e.  RR  /\  r  e.  RR )  ->  ( w ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) r )  =  ( ( w  -  r ) (,) (
w  +  r ) ) )
4239, 40, 41syl2an 480 . . . . . . . . 9  |-  ( ( ( A  e.  (
topGen `  ran  (,) )  /\  w  e.  A
)  /\  r  e.  RR+ )  ->  ( w
( ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  =  ( ( w  -  r ) (,) ( w  +  r ) ) )
4342sseq1d 3459 . . . . . . . 8  |-  ( ( ( A  e.  (
topGen `  ran  (,) )  /\  w  e.  A
)  /\  r  e.  RR+ )  ->  ( (
w ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  C_  A  <->  ( (
w  -  r ) (,) ( w  +  r ) )  C_  A ) )
44 2re 10679 . . . . . . . . . . . 12  |-  2  e.  RR
45 1lt2 10776 . . . . . . . . . . . 12  |-  1  <  2
46 expnlbnd 12402 . . . . . . . . . . . 12  |-  ( ( r  e.  RR+  /\  2  e.  RR  /\  1  <  2 )  ->  E. n  e.  NN  ( 1  / 
( 2 ^ n
) )  <  r
)
4744, 45, 46mp3an23 1356 . . . . . . . . . . 11  |-  ( r  e.  RR+  ->  E. n  e.  NN  ( 1  / 
( 2 ^ n
) )  <  r
)
4847ad2antrl 734 . . . . . . . . . 10  |-  ( ( ( A  e.  (
topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  ->  E. n  e.  NN  ( 1  /  (
2 ^ n ) )  <  r )
4939ad2antrr 732 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  w  e.  RR )
50 2nn 10767 . . . . . . . . . . . . . . . . . . 19  |-  2  e.  NN
51 nnnn0 10876 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  e.  NN  ->  n  e.  NN0 )
5251ad2antrl 734 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  n  e.  NN0 )
53 nnexpcl 12285 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2  e.  NN  /\  n  e.  NN0 )  -> 
( 2 ^ n
)  e.  NN )
5450, 52, 53sylancr 669 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( 2 ^ n )  e.  NN )
5554nnred 10624 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( 2 ^ n )  e.  RR )
5649, 55remulcld 9671 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( w  x.  ( 2 ^ n
) )  e.  RR )
57 fllelt 12033 . . . . . . . . . . . . . . . 16  |-  ( ( w  x.  ( 2 ^ n ) )  e.  RR  ->  (
( |_ `  (
w  x.  ( 2 ^ n ) ) )  <_  ( w  x.  ( 2 ^ n
) )  /\  (
w  x.  ( 2 ^ n ) )  <  ( ( |_
`  ( w  x.  ( 2 ^ n
) ) )  +  1 ) ) )
5856, 57syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( ( |_ `  ( w  x.  ( 2 ^ n
) ) )  <_ 
( w  x.  (
2 ^ n ) )  /\  ( w  x.  ( 2 ^ n ) )  < 
( ( |_ `  ( w  x.  (
2 ^ n ) ) )  +  1 ) ) )
5958simpld 461 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( |_ `  ( w  x.  (
2 ^ n ) ) )  <_  (
w  x.  ( 2 ^ n ) ) )
60 reflcl 12032 . . . . . . . . . . . . . . . 16  |-  ( ( w  x.  ( 2 ^ n ) )  e.  RR  ->  ( |_ `  ( w  x.  ( 2 ^ n
) ) )  e.  RR )
6156, 60syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( |_ `  ( w  x.  (
2 ^ n ) ) )  e.  RR )
6254nngt0d 10653 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  0  <  ( 2 ^ n ) )
63 ledivmul2 10484 . . . . . . . . . . . . . . 15  |-  ( ( ( |_ `  (
w  x.  ( 2 ^ n ) ) )  e.  RR  /\  w  e.  RR  /\  (
( 2 ^ n
)  e.  RR  /\  0  <  ( 2 ^ n ) ) )  ->  ( ( ( |_ `  ( w  x.  ( 2 ^ n ) ) )  /  ( 2 ^ n ) )  <_  w 
<->  ( |_ `  (
w  x.  ( 2 ^ n ) ) )  <_  ( w  x.  ( 2 ^ n
) ) ) )
6461, 49, 55, 62, 63syl112anc 1272 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( (
( |_ `  (
w  x.  ( 2 ^ n ) ) )  /  ( 2 ^ n ) )  <_  w  <->  ( |_ `  ( w  x.  (
2 ^ n ) ) )  <_  (
w  x.  ( 2 ^ n ) ) ) )
6559, 64mpbird 236 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( ( |_ `  ( w  x.  ( 2 ^ n
) ) )  / 
( 2 ^ n
) )  <_  w
)
66 peano2re 9806 . . . . . . . . . . . . . . . 16  |-  ( ( |_ `  ( w  x.  ( 2 ^ n ) ) )  e.  RR  ->  (
( |_ `  (
w  x.  ( 2 ^ n ) ) )  +  1 )  e.  RR )
6761, 66syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( ( |_ `  ( w  x.  ( 2 ^ n
) ) )  +  1 )  e.  RR )
6867, 54nndivred 10658 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( (
( |_ `  (
w  x.  ( 2 ^ n ) ) )  +  1 )  /  ( 2 ^ n ) )  e.  RR )
6958simprd 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( w  x.  ( 2 ^ n
) )  <  (
( |_ `  (
w  x.  ( 2 ^ n ) ) )  +  1 ) )
70 ltmuldiv 10478 . . . . . . . . . . . . . . . 16  |-  ( ( w  e.  RR  /\  ( ( |_ `  ( w  x.  (
2 ^ n ) ) )  +  1 )  e.  RR  /\  ( ( 2 ^ n )  e.  RR  /\  0  <  ( 2 ^ n ) ) )  ->  ( (
w  x.  ( 2 ^ n ) )  <  ( ( |_
`  ( w  x.  ( 2 ^ n
) ) )  +  1 )  <->  w  <  ( ( ( |_ `  ( w  x.  (
2 ^ n ) ) )  +  1 )  /  ( 2 ^ n ) ) ) )
7149, 67, 55, 62, 70syl112anc 1272 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( (
w  x.  ( 2 ^ n ) )  <  ( ( |_
`  ( w  x.  ( 2 ^ n
) ) )  +  1 )  <->  w  <  ( ( ( |_ `  ( w  x.  (
2 ^ n ) ) )  +  1 )  /  ( 2 ^ n ) ) ) )
7269, 71mpbid 214 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  w  <  ( ( ( |_ `  ( w  x.  (
2 ^ n ) ) )  +  1 )  /  ( 2 ^ n ) ) )
7349, 68, 72ltled 9783 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  w  <_  ( ( ( |_ `  ( w  x.  (
2 ^ n ) ) )  +  1 )  /  ( 2 ^ n ) ) )
7461, 54nndivred 10658 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( ( |_ `  ( w  x.  ( 2 ^ n
) ) )  / 
( 2 ^ n
) )  e.  RR )
75 elicc2 11699 . . . . . . . . . . . . . 14  |-  ( ( ( ( |_ `  ( w  x.  (
2 ^ n ) ) )  /  (
2 ^ n ) )  e.  RR  /\  ( ( ( |_
`  ( w  x.  ( 2 ^ n
) ) )  +  1 )  /  (
2 ^ n ) )  e.  RR )  ->  ( w  e.  ( ( ( |_
`  ( w  x.  ( 2 ^ n
) ) )  / 
( 2 ^ n
) ) [,] (
( ( |_ `  ( w  x.  (
2 ^ n ) ) )  +  1 )  /  ( 2 ^ n ) ) )  <->  ( w  e.  RR  /\  ( ( |_ `  ( w  x.  ( 2 ^ n ) ) )  /  ( 2 ^ n ) )  <_  w  /\  w  <_  (
( ( |_ `  ( w  x.  (
2 ^ n ) ) )  +  1 )  /  ( 2 ^ n ) ) ) ) )
7674, 68, 75syl2anc 667 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( w  e.  ( ( ( |_
`  ( w  x.  ( 2 ^ n
) ) )  / 
( 2 ^ n
) ) [,] (
( ( |_ `  ( w  x.  (
2 ^ n ) ) )  +  1 )  /  ( 2 ^ n ) ) )  <->  ( w  e.  RR  /\  ( ( |_ `  ( w  x.  ( 2 ^ n ) ) )  /  ( 2 ^ n ) )  <_  w  /\  w  <_  (
( ( |_ `  ( w  x.  (
2 ^ n ) ) )  +  1 )  /  ( 2 ^ n ) ) ) ) )
7749, 65, 73, 76mpbir3and 1191 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  w  e.  ( ( ( |_
`  ( w  x.  ( 2 ^ n
) ) )  / 
( 2 ^ n
) ) [,] (
( ( |_ `  ( w  x.  (
2 ^ n ) ) )  +  1 )  /  ( 2 ^ n ) ) ) )
7856flcld 12034 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( |_ `  ( w  x.  (
2 ^ n ) ) )  e.  ZZ )
7914dyadval 22550 . . . . . . . . . . . . . . 15  |-  ( ( ( |_ `  (
w  x.  ( 2 ^ n ) ) )  e.  ZZ  /\  n  e.  NN0 )  -> 
( ( |_ `  ( w  x.  (
2 ^ n ) ) ) F n )  =  <. (
( |_ `  (
w  x.  ( 2 ^ n ) ) )  /  ( 2 ^ n ) ) ,  ( ( ( |_ `  ( w  x.  ( 2 ^ n ) ) )  +  1 )  / 
( 2 ^ n
) ) >. )
8078, 52, 79syl2anc 667 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( ( |_ `  ( w  x.  ( 2 ^ n
) ) ) F n )  =  <. ( ( |_ `  (
w  x.  ( 2 ^ n ) ) )  /  ( 2 ^ n ) ) ,  ( ( ( |_ `  ( w  x.  ( 2 ^ n ) ) )  +  1 )  / 
( 2 ^ n
) ) >. )
8180fveq2d 5869 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( [,] `  ( ( |_ `  ( w  x.  (
2 ^ n ) ) ) F n ) )  =  ( [,] `  <. (
( |_ `  (
w  x.  ( 2 ^ n ) ) )  /  ( 2 ^ n ) ) ,  ( ( ( |_ `  ( w  x.  ( 2 ^ n ) ) )  +  1 )  / 
( 2 ^ n
) ) >. )
)
82 df-ov 6293 . . . . . . . . . . . . 13  |-  ( ( ( |_ `  (
w  x.  ( 2 ^ n ) ) )  /  ( 2 ^ n ) ) [,] ( ( ( |_ `  ( w  x.  ( 2 ^ n ) ) )  +  1 )  / 
( 2 ^ n
) ) )  =  ( [,] `  <. ( ( |_ `  (
w  x.  ( 2 ^ n ) ) )  /  ( 2 ^ n ) ) ,  ( ( ( |_ `  ( w  x.  ( 2 ^ n ) ) )  +  1 )  / 
( 2 ^ n
) ) >. )
8381, 82syl6eqr 2503 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( [,] `  ( ( |_ `  ( w  x.  (
2 ^ n ) ) ) F n ) )  =  ( ( ( |_ `  ( w  x.  (
2 ^ n ) ) )  /  (
2 ^ n ) ) [,] ( ( ( |_ `  (
w  x.  ( 2 ^ n ) ) )  +  1 )  /  ( 2 ^ n ) ) ) )
8477, 83eleqtrrd 2532 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  w  e.  ( [,] `  ( ( |_ `  ( w  x.  ( 2 ^ n ) ) ) F n ) ) )
85 ffn 5728 . . . . . . . . . . . . . . . 16  |-  ( F : ( ZZ  X.  NN0 ) --> (  <_  i^i  ( RR  X.  RR ) )  ->  F  Fn  ( ZZ  X.  NN0 ) )
8615, 85ax-mp 5 . . . . . . . . . . . . . . 15  |-  F  Fn  ( ZZ  X.  NN0 )
87 fnovrn 6444 . . . . . . . . . . . . . . 15  |-  ( ( F  Fn  ( ZZ 
X.  NN0 )  /\  ( |_ `  ( w  x.  ( 2 ^ n
) ) )  e.  ZZ  /\  n  e. 
NN0 )  ->  (
( |_ `  (
w  x.  ( 2 ^ n ) ) ) F n )  e.  ran  F )
8886, 87mp3an1 1351 . . . . . . . . . . . . . 14  |-  ( ( ( |_ `  (
w  x.  ( 2 ^ n ) ) )  e.  ZZ  /\  n  e.  NN0 )  -> 
( ( |_ `  ( w  x.  (
2 ^ n ) ) ) F n )  e.  ran  F
)
8978, 52, 88syl2anc 667 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( ( |_ `  ( w  x.  ( 2 ^ n
) ) ) F n )  e.  ran  F )
90 simplrl 770 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  r  e.  RR+ )
9190rpred 11341 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  r  e.  RR )
9249, 91resubcld 10047 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( w  -  r )  e.  RR )
9392rexrd 9690 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( w  -  r )  e. 
RR* )
9449, 91readdcld 9670 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( w  +  r )  e.  RR )
9594rexrd 9690 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( w  +  r )  e. 
RR* )
9674, 91readdcld 9670 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( (
( |_ `  (
w  x.  ( 2 ^ n ) ) )  /  ( 2 ^ n ) )  +  r )  e.  RR )
9761recnd 9669 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( |_ `  ( w  x.  (
2 ^ n ) ) )  e.  CC )
98 1cnd 9659 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  1  e.  CC )
9955recnd 9669 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( 2 ^ n )  e.  CC )
10054nnne0d 10654 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( 2 ^ n )  =/=  0 )
10197, 98, 99, 100divdird 10421 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( (
( |_ `  (
w  x.  ( 2 ^ n ) ) )  +  1 )  /  ( 2 ^ n ) )  =  ( ( ( |_
`  ( w  x.  ( 2 ^ n
) ) )  / 
( 2 ^ n
) )  +  ( 1  /  ( 2 ^ n ) ) ) )
10254nnrecred 10655 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( 1  /  ( 2 ^ n ) )  e.  RR )
103 simprr 766 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( 1  /  ( 2 ^ n ) )  < 
r )
104102, 91, 74, 103ltadd2dd 9794 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( (
( |_ `  (
w  x.  ( 2 ^ n ) ) )  /  ( 2 ^ n ) )  +  ( 1  / 
( 2 ^ n
) ) )  < 
( ( ( |_
`  ( w  x.  ( 2 ^ n
) ) )  / 
( 2 ^ n
) )  +  r ) )
105101, 104eqbrtrd 4423 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( (
( |_ `  (
w  x.  ( 2 ^ n ) ) )  +  1 )  /  ( 2 ^ n ) )  < 
( ( ( |_
`  ( w  x.  ( 2 ^ n
) ) )  / 
( 2 ^ n
) )  +  r ) )
10649, 68, 96, 72, 105lttrd 9796 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  w  <  ( ( ( |_ `  ( w  x.  (
2 ^ n ) ) )  /  (
2 ^ n ) )  +  r ) )
10749, 91, 74ltsubaddd 10209 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( (
w  -  r )  <  ( ( |_
`  ( w  x.  ( 2 ^ n
) ) )  / 
( 2 ^ n
) )  <->  w  <  ( ( ( |_ `  ( w  x.  (
2 ^ n ) ) )  /  (
2 ^ n ) )  +  r ) ) )
108106, 107mpbird 236 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( w  -  r )  < 
( ( |_ `  ( w  x.  (
2 ^ n ) ) )  /  (
2 ^ n ) ) )
10949, 102readdcld 9670 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( w  +  ( 1  / 
( 2 ^ n
) ) )  e.  RR )
11074, 49, 102, 65leadd1dd 10227 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( (
( |_ `  (
w  x.  ( 2 ^ n ) ) )  /  ( 2 ^ n ) )  +  ( 1  / 
( 2 ^ n
) ) )  <_ 
( w  +  ( 1  /  ( 2 ^ n ) ) ) )
111101, 110eqbrtrd 4423 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( (
( |_ `  (
w  x.  ( 2 ^ n ) ) )  +  1 )  /  ( 2 ^ n ) )  <_ 
( w  +  ( 1  /  ( 2 ^ n ) ) ) )
112102, 91, 49, 103ltadd2dd 9794 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( w  +  ( 1  / 
( 2 ^ n
) ) )  < 
( w  +  r ) )
11368, 109, 94, 111, 112lelttrd 9793 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( (
( |_ `  (
w  x.  ( 2 ^ n ) ) )  +  1 )  /  ( 2 ^ n ) )  < 
( w  +  r ) )
114 iccssioo 11703 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( w  -  r )  e.  RR*  /\  ( w  +  r )  e.  RR* )  /\  ( ( w  -  r )  <  (
( |_ `  (
w  x.  ( 2 ^ n ) ) )  /  ( 2 ^ n ) )  /\  ( ( ( |_ `  ( w  x.  ( 2 ^ n ) ) )  +  1 )  / 
( 2 ^ n
) )  <  (
w  +  r ) ) )  ->  (
( ( |_ `  ( w  x.  (
2 ^ n ) ) )  /  (
2 ^ n ) ) [,] ( ( ( |_ `  (
w  x.  ( 2 ^ n ) ) )  +  1 )  /  ( 2 ^ n ) ) ) 
C_  ( ( w  -  r ) (,) ( w  +  r ) ) )
11593, 95, 108, 113, 114syl22anc 1269 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( (
( |_ `  (
w  x.  ( 2 ^ n ) ) )  /  ( 2 ^ n ) ) [,] ( ( ( |_ `  ( w  x.  ( 2 ^ n ) ) )  +  1 )  / 
( 2 ^ n
) ) )  C_  ( ( w  -  r ) (,) (
w  +  r ) ) )
11683, 115eqsstrd 3466 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( [,] `  ( ( |_ `  ( w  x.  (
2 ^ n ) ) ) F n ) )  C_  (
( w  -  r
) (,) ( w  +  r ) ) )
117 simplrr 771 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( (
w  -  r ) (,) ( w  +  r ) )  C_  A )
118116, 117sstrd 3442 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( [,] `  ( ( |_ `  ( w  x.  (
2 ^ n ) ) ) F n ) )  C_  A
)
119 fveq2 5865 . . . . . . . . . . . . . . 15  |-  ( z  =  ( ( |_
`  ( w  x.  ( 2 ^ n
) ) ) F n )  ->  ( [,] `  z )  =  ( [,] `  (
( |_ `  (
w  x.  ( 2 ^ n ) ) ) F n ) ) )
120119sseq1d 3459 . . . . . . . . . . . . . 14  |-  ( z  =  ( ( |_
`  ( w  x.  ( 2 ^ n
) ) ) F n )  ->  (
( [,] `  z
)  C_  A  <->  ( [,] `  ( ( |_ `  ( w  x.  (
2 ^ n ) ) ) F n ) )  C_  A
) )
121120elrab 3196 . . . . . . . . . . . . 13  |-  ( ( ( |_ `  (
w  x.  ( 2 ^ n ) ) ) F n )  e.  { z  e. 
ran  F  |  ( [,] `  z )  C_  A }  <->  ( ( ( |_ `  ( w  x.  ( 2 ^ n ) ) ) F n )  e. 
ran  F  /\  ( [,] `  ( ( |_
`  ( w  x.  ( 2 ^ n
) ) ) F n ) )  C_  A ) )
12289, 118, 121sylanbrc 670 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( ( |_ `  ( w  x.  ( 2 ^ n
) ) ) F n )  e.  {
z  e.  ran  F  |  ( [,] `  z
)  C_  A }
)
123 funfvima2 6141 . . . . . . . . . . . . 13  |-  ( ( Fun  [,]  /\  { z  e.  ran  F  | 
( [,] `  z
)  C_  A }  C_ 
dom  [,] )  ->  (
( ( |_ `  ( w  x.  (
2 ^ n ) ) ) F n )  e.  { z  e.  ran  F  | 
( [,] `  z
)  C_  A }  ->  ( [,] `  (
( |_ `  (
w  x.  ( 2 ^ n ) ) ) F n ) )  e.  ( [,] " { z  e.  ran  F  |  ( [,] `  z
)  C_  A }
) ) )
12412, 24, 123mp2an 678 . . . . . . . . . . . 12  |-  ( ( ( |_ `  (
w  x.  ( 2 ^ n ) ) ) F n )  e.  { z  e. 
ran  F  |  ( [,] `  z )  C_  A }  ->  ( [,] `  ( ( |_ `  ( w  x.  (
2 ^ n ) ) ) F n ) )  e.  ( [,] " { z  e.  ran  F  | 
( [,] `  z
)  C_  A }
) )
125122, 124syl 17 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  ( [,] `  ( ( |_ `  ( w  x.  (
2 ^ n ) ) ) F n ) )  e.  ( [,] " { z  e.  ran  F  | 
( [,] `  z
)  C_  A }
) )
126 elunii 4203 . . . . . . . . . . 11  |-  ( ( w  e.  ( [,] `  ( ( |_ `  ( w  x.  (
2 ^ n ) ) ) F n ) )  /\  ( [,] `  ( ( |_
`  ( w  x.  ( 2 ^ n
) ) ) F n ) )  e.  ( [,] " {
z  e.  ran  F  |  ( [,] `  z
)  C_  A }
) )  ->  w  e.  U. ( [,] " {
z  e.  ran  F  |  ( [,] `  z
)  C_  A }
) )
12784, 125, 126syl2anc 667 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  /\  ( n  e.  NN  /\  ( 1  /  (
2 ^ n ) )  <  r ) )  ->  w  e.  U. ( [,] " {
z  e.  ran  F  |  ( [,] `  z
)  C_  A }
) )
12848, 127rexlimddv 2883 . . . . . . . . 9  |-  ( ( ( A  e.  (
topGen `  ran  (,) )  /\  w  e.  A
)  /\  ( r  e.  RR+  /\  ( ( w  -  r ) (,) ( w  +  r ) )  C_  A ) )  ->  w  e.  U. ( [,] " { z  e. 
ran  F  |  ( [,] `  z )  C_  A } ) )
129128expr 620 . . . . . . . 8  |-  ( ( ( A  e.  (
topGen `  ran  (,) )  /\  w  e.  A
)  /\  r  e.  RR+ )  ->  ( (
( w  -  r
) (,) ( w  +  r ) ) 
C_  A  ->  w  e.  U. ( [,] " {
z  e.  ran  F  |  ( [,] `  z
)  C_  A }
) ) )
13043, 129sylbid 219 . . . . . . 7  |-  ( ( ( A  e.  (
topGen `  ran  (,) )  /\  w  e.  A
)  /\  r  e.  RR+ )  ->  ( (
w ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  C_  A  ->  w  e.  U. ( [,] " { z  e.  ran  F  |  ( [,] `  z
)  C_  A }
) ) )
131130rexlimdva 2879 . . . . . 6  |-  ( ( A  e.  ( topGen ` 
ran  (,) )  /\  w  e.  A )  ->  ( E. r  e.  RR+  (
w ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  C_  A  ->  w  e.  U. ( [,] " { z  e.  ran  F  |  ( [,] `  z
)  C_  A }
) ) )
13235, 131mpd 15 . . . . 5  |-  ( ( A  e.  ( topGen ` 
ran  (,) )  /\  w  e.  A )  ->  w  e.  U. ( [,] " {
z  e.  ran  F  |  ( [,] `  z
)  C_  A }
) )
133132ex 436 . . . 4  |-  ( A  e.  ( topGen `  ran  (,) )  ->  ( w  e.  A  ->  w  e. 
U. ( [,] " {
z  e.  ran  F  |  ( [,] `  z
)  C_  A }
) ) )
134133ssrdv 3438 . . 3  |-  ( A  e.  ( topGen `  ran  (,) )  ->  A  C_  U. ( [,] " { z  e. 
ran  F  |  ( [,] `  z )  C_  A } ) )
13529, 134eqssd 3449 . 2  |-  ( A  e.  ( topGen `  ran  (,) )  ->  U. ( [,] " { z  e. 
ran  F  |  ( [,] `  z )  C_  A } )  =  A )
136 fveq2 5865 . . . . . . 7  |-  ( c  =  a  ->  ( [,] `  c )  =  ( [,] `  a
) )
137136sseq1d 3459 . . . . . 6  |-  ( c  =  a  ->  (
( [,] `  c
)  C_  ( [,] `  b )  <->  ( [,] `  a )  C_  ( [,] `  b ) ) )
138 equequ1 1867 . . . . . 6  |-  ( c  =  a  ->  (
c  =  b  <->  a  =  b ) )
139137, 138imbi12d 322 . . . . 5  |-  ( c  =  a  ->  (
( ( [,] `  c
)  C_  ( [,] `  b )  ->  c  =  b )  <->  ( ( [,] `  a )  C_  ( [,] `  b )  ->  a  =  b ) ) )
140139ralbidv 2827 . . . 4  |-  ( c  =  a  ->  ( A. b  e.  { z  e.  ran  F  | 
( [,] `  z
)  C_  A } 
( ( [,] `  c
)  C_  ( [,] `  b )  ->  c  =  b )  <->  A. b  e.  { z  e.  ran  F  |  ( [,] `  z
)  C_  A } 
( ( [,] `  a
)  C_  ( [,] `  b )  ->  a  =  b ) ) )
141140cbvrabv 3044 . . 3  |-  { c  e.  { z  e. 
ran  F  |  ( [,] `  z )  C_  A }  |  A. b  e.  { z  e.  ran  F  |  ( [,] `  z ) 
C_  A }  (
( [,] `  c
)  C_  ( [,] `  b )  ->  c  =  b ) }  =  { a  e. 
{ z  e.  ran  F  |  ( [,] `  z
)  C_  A }  |  A. b  e.  {
z  e.  ran  F  |  ( [,] `  z
)  C_  A } 
( ( [,] `  a
)  C_  ( [,] `  b )  ->  a  =  b ) }
14213a1i 11 . . 3  |-  ( A  e.  ( topGen `  ran  (,) )  ->  { z  e.  ran  F  |  ( [,] `  z ) 
C_  A }  C_  ran  F )
14314, 141, 142dyadmbl 22558 . 2  |-  ( A  e.  ( topGen `  ran  (,) )  ->  U. ( [,] " { z  e. 
ran  F  |  ( [,] `  z )  C_  A } )  e.  dom  vol )
144135, 143eqeltrrd 2530 1  |-  ( A  e.  ( topGen `  ran  (,) )  ->  A  e.  dom  vol )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 985    = wceq 1444    e. wcel 1887   A.wral 2737   E.wrex 2738   {crab 2741    i^i cin 3403    C_ wss 3404   ~Pcpw 3951   <.cop 3974   U.cuni 4198   class class class wbr 4402    X. cxp 4832   dom cdm 4834   ran crn 4835    |` cres 4836   "cima 4837    o. ccom 4838   Fun wfun 5576    Fn wfn 5577   -->wf 5578   ` cfv 5582  (class class class)co 6290    |-> cmpt2 6292   RRcr 9538   0cc0 9539   1c1 9540    + caddc 9542    x. cmul 9544   RR*cxr 9674    < clt 9675    <_ cle 9676    - cmin 9860    / cdiv 10269   NNcn 10609   2c2 10659   NN0cn0 10869   ZZcz 10937   RR+crp 11302   (,)cioo 11635   [,]cicc 11638   |_cfl 12026   ^cexp 12272   abscabs 13297   topGenctg 15336   *Metcxmt 18955   ballcbl 18957   MetOpencmopn 18960   volcvol 22415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-inf2 8146  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-pre-sup 9617
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-fal 1450  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-disj 4374  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-se 4794  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-isom 5591  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-of 6531  df-om 6693  df-1st 6793  df-2nd 6794  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-1o 7182  df-2o 7183  df-oadd 7186  df-omul 7187  df-er 7363  df-map 7474  df-pm 7475  df-en 7570  df-dom 7571  df-sdom 7572  df-fin 7573  df-fi 7925  df-sup 7956  df-inf 7957  df-oi 8025  df-card 8373  df-acn 8376  df-cda 8598  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-n0 10870  df-z 10938  df-uz 11160  df-q 11265  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-ioo 11639  df-ico 11641  df-icc 11642  df-fz 11785  df-fzo 11916  df-fl 12028  df-seq 12214  df-exp 12273  df-hash 12516  df-cj 13162  df-re 13163  df-im 13164  df-sqrt 13298  df-abs 13299  df-clim 13552  df-rlim 13553  df-sum 13753  df-rest 15321  df-topgen 15342  df-psmet 18962  df-xmet 18963  df-met 18964  df-bl 18965  df-mopn 18966  df-top 19921  df-bases 19922  df-topon 19923  df-cmp 20402  df-ovol 22416  df-vol 22418
This theorem is referenced by:  opnmbl  22560
  Copyright terms: Public domain W3C validator