MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opncldf1 Structured version   Unicode version

Theorem opncldf1 19671
Description: A bijection useful for converting statements about open sets to statements about closed sets and vice versa. (Contributed by Jeff Hankins, 27-Aug-2009.) (Proof shortened by Mario Carneiro, 1-Sep-2015.)
Hypotheses
Ref Expression
opncldf.1  |-  X  = 
U. J
opncldf.2  |-  F  =  ( u  e.  J  |->  ( X  \  u
) )
Assertion
Ref Expression
opncldf1  |-  ( J  e.  Top  ->  ( F : J -1-1-onto-> ( Clsd `  J
)  /\  `' F  =  ( x  e.  ( Clsd `  J
)  |->  ( X  \  x ) ) ) )
Distinct variable groups:    x, F    x, u, J    u, X, x
Allowed substitution hint:    F( u)

Proof of Theorem opncldf1
StepHypRef Expression
1 opncldf.2 . 2  |-  F  =  ( u  e.  J  |->  ( X  \  u
) )
2 opncldf.1 . . 3  |-  X  = 
U. J
32opncld 19619 . 2  |-  ( ( J  e.  Top  /\  u  e.  J )  ->  ( X  \  u
)  e.  ( Clsd `  J ) )
42cldopn 19617 . . 3  |-  ( x  e.  ( Clsd `  J
)  ->  ( X  \  x )  e.  J
)
54adantl 464 . 2  |-  ( ( J  e.  Top  /\  x  e.  ( Clsd `  J ) )  -> 
( X  \  x
)  e.  J )
62cldss 19615 . . . . . . 7  |-  ( x  e.  ( Clsd `  J
)  ->  x  C_  X
)
76ad2antll 726 . . . . . 6  |-  ( ( J  e.  Top  /\  ( u  e.  J  /\  x  e.  ( Clsd `  J ) ) )  ->  x  C_  X
)
8 dfss4 3657 . . . . . 6  |-  ( x 
C_  X  <->  ( X  \  ( X  \  x
) )  =  x )
97, 8sylib 196 . . . . 5  |-  ( ( J  e.  Top  /\  ( u  e.  J  /\  x  e.  ( Clsd `  J ) ) )  ->  ( X  \  ( X  \  x
) )  =  x )
109eqcomd 2390 . . . 4  |-  ( ( J  e.  Top  /\  ( u  e.  J  /\  x  e.  ( Clsd `  J ) ) )  ->  x  =  ( X  \  ( X  \  x ) ) )
11 difeq2 3530 . . . . 5  |-  ( u  =  ( X  \  x )  ->  ( X  \  u )  =  ( X  \  ( X  \  x ) ) )
1211eqeq2d 2396 . . . 4  |-  ( u  =  ( X  \  x )  ->  (
x  =  ( X 
\  u )  <->  x  =  ( X  \  ( X  \  x ) ) ) )
1310, 12syl5ibrcom 222 . . 3  |-  ( ( J  e.  Top  /\  ( u  e.  J  /\  x  e.  ( Clsd `  J ) ) )  ->  ( u  =  ( X  \  x )  ->  x  =  ( X  \  u ) ) )
142eltopss 19501 . . . . . . 7  |-  ( ( J  e.  Top  /\  u  e.  J )  ->  u  C_  X )
1514adantrr 714 . . . . . 6  |-  ( ( J  e.  Top  /\  ( u  e.  J  /\  x  e.  ( Clsd `  J ) ) )  ->  u  C_  X
)
16 dfss4 3657 . . . . . 6  |-  ( u 
C_  X  <->  ( X  \  ( X  \  u
) )  =  u )
1715, 16sylib 196 . . . . 5  |-  ( ( J  e.  Top  /\  ( u  e.  J  /\  x  e.  ( Clsd `  J ) ) )  ->  ( X  \  ( X  \  u
) )  =  u )
1817eqcomd 2390 . . . 4  |-  ( ( J  e.  Top  /\  ( u  e.  J  /\  x  e.  ( Clsd `  J ) ) )  ->  u  =  ( X  \  ( X  \  u ) ) )
19 difeq2 3530 . . . . 5  |-  ( x  =  ( X  \  u )  ->  ( X  \  x )  =  ( X  \  ( X  \  u ) ) )
2019eqeq2d 2396 . . . 4  |-  ( x  =  ( X  \  u )  ->  (
u  =  ( X 
\  x )  <->  u  =  ( X  \  ( X  \  u ) ) ) )
2118, 20syl5ibrcom 222 . . 3  |-  ( ( J  e.  Top  /\  ( u  e.  J  /\  x  e.  ( Clsd `  J ) ) )  ->  ( x  =  ( X  \  u )  ->  u  =  ( X  \  x ) ) )
2213, 21impbid 191 . 2  |-  ( ( J  e.  Top  /\  ( u  e.  J  /\  x  e.  ( Clsd `  J ) ) )  ->  ( u  =  ( X  \  x )  <->  x  =  ( X  \  u
) ) )
231, 3, 5, 22f1ocnv2d 6425 1  |-  ( J  e.  Top  ->  ( F : J -1-1-onto-> ( Clsd `  J
)  /\  `' F  =  ( x  e.  ( Clsd `  J
)  |->  ( X  \  x ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1399    e. wcel 1826    \ cdif 3386    C_ wss 3389   U.cuni 4163    |-> cmpt 4425   `'ccnv 4912   -1-1-onto->wf1o 5495   ` cfv 5496   Topctop 19479   Clsdccld 19602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-ral 2737  df-rex 2738  df-rab 2741  df-v 3036  df-sbc 3253  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-op 3951  df-uni 4164  df-br 4368  df-opab 4426  df-mpt 4427  df-id 4709  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-top 19484  df-cld 19605
This theorem is referenced by:  opncldf3  19673  cmpfi  19994
  Copyright terms: Public domain W3C validator