MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opncld Structured version   Unicode version

Theorem opncld 18649
Description: The complement of an open set is closed. (Contributed by NM, 6-Oct-2006.)
Hypothesis
Ref Expression
iscld.1  |-  X  = 
U. J
Assertion
Ref Expression
opncld  |-  ( ( J  e.  Top  /\  S  e.  J )  ->  ( X  \  S
)  e.  ( Clsd `  J ) )

Proof of Theorem opncld
StepHypRef Expression
1 simpr 461 . 2  |-  ( ( J  e.  Top  /\  S  e.  J )  ->  S  e.  J )
2 iscld.1 . . . 4  |-  X  = 
U. J
32eltopss 18532 . . 3  |-  ( ( J  e.  Top  /\  S  e.  J )  ->  S  C_  X )
42isopn2 18648 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( S  e.  J  <->  ( X  \  S )  e.  ( Clsd `  J
) ) )
53, 4syldan 470 . 2  |-  ( ( J  e.  Top  /\  S  e.  J )  ->  ( S  e.  J  <->  ( X  \  S )  e.  ( Clsd `  J
) ) )
61, 5mpbid 210 1  |-  ( ( J  e.  Top  /\  S  e.  J )  ->  ( X  \  S
)  e.  ( Clsd `  J ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756    \ cdif 3337    C_ wss 3340   U.cuni 4103   ` cfv 5430   Topctop 18510   Clsdccld 18632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-ral 2732  df-rex 2733  df-rab 2736  df-v 2986  df-sbc 3199  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-op 3896  df-uni 4104  df-br 4305  df-opab 4363  df-mpt 4364  df-id 4648  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-iota 5393  df-fun 5432  df-fv 5438  df-top 18515  df-cld 18635
This theorem is referenced by:  iincld  18655  iuncld  18661  clsval2  18666  elcls  18689  opncldf1  18700  opncldf2  18701  restcld  18788  iscncl  18885  pnrmopn  18959  isnrm2  18974  isnrm3  18975  isreg2  18993  hauscmplem  19021  conndisj  19032  hausllycmp  19110  1stckgen  19139  txkgen  19237  qtoprest  19302  qtopcmap  19304  icopnfcld  20359  lebnumlem1  20545  bcth3  20854  sxbrsigalem3  26699  pconcon  27132  cvmscld  27174  mblfinlem3  28442  mblfinlem4  28443  cldbnd  28533
  Copyright terms: Public domain W3C validator