Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opltn0 Structured version   Unicode version

Theorem opltn0 32523
Description: A lattice element greater than zero is nonzero. TODO: is this needed? (Contributed by NM, 1-Jun-2012.)
Hypotheses
Ref Expression
opltne0.b  |-  B  =  ( Base `  K
)
opltne0.s  |-  .<  =  ( lt `  K )
opltne0.z  |-  .0.  =  ( 0. `  K )
Assertion
Ref Expression
opltn0  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  (  .0.  .<  X  <->  X  =/=  .0.  ) )

Proof of Theorem opltn0
StepHypRef Expression
1 simpl 454 . . 3  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  K  e.  OP )
2 opltne0.b . . . . 5  |-  B  =  ( Base `  K
)
3 opltne0.z . . . . 5  |-  .0.  =  ( 0. `  K )
42, 3op0cl 32517 . . . 4  |-  ( K  e.  OP  ->  .0.  e.  B )
54adantr 462 . . 3  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  .0.  e.  B )
6 simpr 458 . . 3  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  X  e.  B )
7 eqid 2441 . . . 4  |-  ( le
`  K )  =  ( le `  K
)
8 opltne0.s . . . 4  |-  .<  =  ( lt `  K )
97, 8pltval 15126 . . 3  |-  ( ( K  e.  OP  /\  .0.  e.  B  /\  X  e.  B )  ->  (  .0.  .<  X  <->  (  .0.  ( le `  K ) X  /\  .0.  =/=  X ) ) )
101, 5, 6, 9syl3anc 1213 . 2  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  (  .0.  .<  X  <->  (  .0.  ( le `  K ) X  /\  .0.  =/=  X ) ) )
11 necom 2691 . . 3  |-  ( X  =/=  .0.  <->  .0.  =/=  X )
122, 7, 3op0le 32519 . . . 4  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  .0.  ( le `  K ) X )
1312biantrurd 505 . . 3  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  (  .0.  =/=  X  <->  (  .0.  ( le `  K ) X  /\  .0.  =/=  X ) ) )
1411, 13syl5rbb 258 . 2  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  ( (  .0.  ( le `  K ) X  /\  .0.  =/=  X
)  <->  X  =/=  .0.  ) )
1510, 14bitrd 253 1  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  (  .0.  .<  X  <->  X  =/=  .0.  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1364    e. wcel 1761    =/= wne 2604   class class class wbr 4289   ` cfv 5415   Basecbs 14170   lecple 14241   ltcplt 15107   0.cp0 15203   OPcops 32505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-id 4632  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-plt 15124  df-glb 15141  df-p0 15205  df-oposet 32509
This theorem is referenced by:  atle  32768  dalemcea  32992  2atm2atN  33117  dia2dimlem2  34398  dia2dimlem3  34399
  Copyright terms: Public domain W3C validator