Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  opeq12i Structured version   Unicode version

Theorem opeq12i 4164
 Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) (Proof shortened by Eric Schmidt, 4-Apr-2007.)
Hypotheses
Ref Expression
opeq1i.1
opeq12i.2
Assertion
Ref Expression
opeq12i

Proof of Theorem opeq12i
StepHypRef Expression
1 opeq1i.1 . 2
2 opeq12i.2 . 2
3 opeq12 4161 . 2
41, 2, 3mp2an 672 1
 Colors of variables: wff setvar class Syntax hints:   wceq 1370  cop 3983 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-rab 2804  df-v 3072  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-nul 3738  df-if 3892  df-sn 3978  df-pr 3980  df-op 3984 This theorem is referenced by:  elxp6  6710  addcompq  9222  mulcompq  9224  addassnq  9230  mulassnq  9231  distrnq  9233  1lt2nq  9245  axi2m1  9429  om2uzrdg  11882  axlowdimlem6  23330  rngoi  24004  nvop2  24123  nvvop  24124  phop  24355  hhsssh  24807  isdrngo1  28902
 Copyright terms: Public domain W3C validator