MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opeo Structured version   Unicode version

Theorem opeo 13880
Description: The sum of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
opeo  |-  ( ( ( A  e.  ZZ  /\ 
-.  2  ||  A
)  /\  ( B  e.  ZZ  /\  2  ||  B ) )  ->  -.  2  ||  ( A  +  B ) )

Proof of Theorem opeo
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 odd2np1 13592 . . . . . 6  |-  ( A  e.  ZZ  ->  ( -.  2  ||  A  <->  E. a  e.  ZZ  ( ( 2  x.  a )  +  1 )  =  A ) )
2 2z 10678 . . . . . . 7  |-  2  e.  ZZ
3 divides 13537 . . . . . . 7  |-  ( ( 2  e.  ZZ  /\  B  e.  ZZ )  ->  ( 2  ||  B  <->  E. b  e.  ZZ  (
b  x.  2 )  =  B ) )
42, 3mpan 670 . . . . . 6  |-  ( B  e.  ZZ  ->  (
2  ||  B  <->  E. b  e.  ZZ  ( b  x.  2 )  =  B ) )
51, 4bi2anan9 868 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( -.  2  ||  A  /\  2  ||  B )  <->  ( E. a  e.  ZZ  (
( 2  x.  a
)  +  1 )  =  A  /\  E. b  e.  ZZ  (
b  x.  2 )  =  B ) ) )
6 reeanv 2888 . . . . . 6  |-  ( E. a  e.  ZZ  E. b  e.  ZZ  (
( ( 2  x.  a )  +  1 )  =  A  /\  ( b  x.  2 )  =  B )  <-> 
( E. a  e.  ZZ  ( ( 2  x.  a )  +  1 )  =  A  /\  E. b  e.  ZZ  ( b  x.  2 )  =  B ) )
7 zaddcl 10685 . . . . . . . . 9  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( a  +  b )  e.  ZZ )
8 zcn 10651 . . . . . . . . . 10  |-  ( a  e.  ZZ  ->  a  e.  CC )
9 zcn 10651 . . . . . . . . . 10  |-  ( b  e.  ZZ  ->  b  e.  CC )
10 2cn 10392 . . . . . . . . . . . . 13  |-  2  e.  CC
11 adddi 9371 . . . . . . . . . . . . 13  |-  ( ( 2  e.  CC  /\  a  e.  CC  /\  b  e.  CC )  ->  (
2  x.  ( a  +  b ) )  =  ( ( 2  x.  a )  +  ( 2  x.  b
) ) )
1210, 11mp3an1 1301 . . . . . . . . . . . 12  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( 2  x.  (
a  +  b ) )  =  ( ( 2  x.  a )  +  ( 2  x.  b ) ) )
1312oveq1d 6106 . . . . . . . . . . 11  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( ( 2  x.  ( a  +  b ) )  +  1 )  =  ( ( ( 2  x.  a
)  +  ( 2  x.  b ) )  +  1 ) )
14 mulcl 9366 . . . . . . . . . . . . 13  |-  ( ( 2  e.  CC  /\  a  e.  CC )  ->  ( 2  x.  a
)  e.  CC )
1510, 14mpan 670 . . . . . . . . . . . 12  |-  ( a  e.  CC  ->  (
2  x.  a )  e.  CC )
16 mulcl 9366 . . . . . . . . . . . . 13  |-  ( ( 2  e.  CC  /\  b  e.  CC )  ->  ( 2  x.  b
)  e.  CC )
1710, 16mpan 670 . . . . . . . . . . . 12  |-  ( b  e.  CC  ->  (
2  x.  b )  e.  CC )
18 ax-1cn 9340 . . . . . . . . . . . . 13  |-  1  e.  CC
19 add32 9583 . . . . . . . . . . . . 13  |-  ( ( ( 2  x.  a
)  e.  CC  /\  ( 2  x.  b
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( 2  x.  a )  +  ( 2  x.  b
) )  +  1 )  =  ( ( ( 2  x.  a
)  +  1 )  +  ( 2  x.  b ) ) )
2018, 19mp3an3 1303 . . . . . . . . . . . 12  |-  ( ( ( 2  x.  a
)  e.  CC  /\  ( 2  x.  b
)  e.  CC )  ->  ( ( ( 2  x.  a )  +  ( 2  x.  b ) )  +  1 )  =  ( ( ( 2  x.  a )  +  1 )  +  ( 2  x.  b ) ) )
2115, 17, 20syl2an 477 . . . . . . . . . . 11  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( ( ( 2  x.  a )  +  ( 2  x.  b
) )  +  1 )  =  ( ( ( 2  x.  a
)  +  1 )  +  ( 2  x.  b ) ) )
22 mulcom 9368 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  CC  /\  b  e.  CC )  ->  ( 2  x.  b
)  =  ( b  x.  2 ) )
2310, 22mpan 670 . . . . . . . . . . . . 13  |-  ( b  e.  CC  ->  (
2  x.  b )  =  ( b  x.  2 ) )
2423adantl 466 . . . . . . . . . . . 12  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( 2  x.  b
)  =  ( b  x.  2 ) )
2524oveq2d 6107 . . . . . . . . . . 11  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( ( ( 2  x.  a )  +  1 )  +  ( 2  x.  b ) )  =  ( ( ( 2  x.  a
)  +  1 )  +  ( b  x.  2 ) ) )
2613, 21, 253eqtrd 2479 . . . . . . . . . 10  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( ( 2  x.  ( a  +  b ) )  +  1 )  =  ( ( ( 2  x.  a
)  +  1 )  +  ( b  x.  2 ) ) )
278, 9, 26syl2an 477 . . . . . . . . 9  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( 2  x.  ( a  +  b ) )  +  1 )  =  ( ( ( 2  x.  a
)  +  1 )  +  ( b  x.  2 ) ) )
28 oveq2 6099 . . . . . . . . . . . 12  |-  ( c  =  ( a  +  b )  ->  (
2  x.  c )  =  ( 2  x.  ( a  +  b ) ) )
2928oveq1d 6106 . . . . . . . . . . 11  |-  ( c  =  ( a  +  b )  ->  (
( 2  x.  c
)  +  1 )  =  ( ( 2  x.  ( a  +  b ) )  +  1 ) )
3029eqeq1d 2451 . . . . . . . . . 10  |-  ( c  =  ( a  +  b )  ->  (
( ( 2  x.  c )  +  1 )  =  ( ( ( 2  x.  a
)  +  1 )  +  ( b  x.  2 ) )  <->  ( (
2  x.  ( a  +  b ) )  +  1 )  =  ( ( ( 2  x.  a )  +  1 )  +  ( b  x.  2 ) ) ) )
3130rspcev 3073 . . . . . . . . 9  |-  ( ( ( a  +  b )  e.  ZZ  /\  ( ( 2  x.  ( a  +  b ) )  +  1 )  =  ( ( ( 2  x.  a
)  +  1 )  +  ( b  x.  2 ) ) )  ->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( ( ( 2  x.  a
)  +  1 )  +  ( b  x.  2 ) ) )
327, 27, 31syl2anc 661 . . . . . . . 8  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( ( ( 2  x.  a
)  +  1 )  +  ( b  x.  2 ) ) )
33 oveq12 6100 . . . . . . . . . 10  |-  ( ( ( ( 2  x.  a )  +  1 )  =  A  /\  ( b  x.  2 )  =  B )  ->  ( ( ( 2  x.  a )  +  1 )  +  ( b  x.  2 ) )  =  ( A  +  B ) )
3433eqeq2d 2454 . . . . . . . . 9  |-  ( ( ( ( 2  x.  a )  +  1 )  =  A  /\  ( b  x.  2 )  =  B )  ->  ( ( ( 2  x.  c )  +  1 )  =  ( ( ( 2  x.  a )  +  1 )  +  ( b  x.  2 ) )  <->  ( ( 2  x.  c )  +  1 )  =  ( A  +  B ) ) )
3534rexbidv 2736 . . . . . . . 8  |-  ( ( ( ( 2  x.  a )  +  1 )  =  A  /\  ( b  x.  2 )  =  B )  ->  ( E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( ( ( 2  x.  a )  +  1 )  +  ( b  x.  2 ) )  <->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( A  +  B ) ) )
3632, 35syl5ibcom 220 . . . . . . 7  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( ( ( 2  x.  a )  +  1 )  =  A  /\  ( b  x.  2 )  =  B )  ->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( A  +  B ) ) )
3736rexlimivv 2846 . . . . . 6  |-  ( E. a  e.  ZZ  E. b  e.  ZZ  (
( ( 2  x.  a )  +  1 )  =  A  /\  ( b  x.  2 )  =  B )  ->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( A  +  B ) )
386, 37sylbir 213 . . . . 5  |-  ( ( E. a  e.  ZZ  ( ( 2  x.  a )  +  1 )  =  A  /\  E. b  e.  ZZ  (
b  x.  2 )  =  B )  ->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( A  +  B ) )
395, 38syl6bi 228 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( -.  2  ||  A  /\  2  ||  B )  ->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( A  +  B ) ) )
4039imp 429 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  2  ||  B ) )  ->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( A  +  B ) )
4140an4s 822 . 2  |-  ( ( ( A  e.  ZZ  /\ 
-.  2  ||  A
)  /\  ( B  e.  ZZ  /\  2  ||  B ) )  ->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( A  +  B ) )
42 zaddcl 10685 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  +  B
)  e.  ZZ )
4342ad2ant2r 746 . . 3  |-  ( ( ( A  e.  ZZ  /\ 
-.  2  ||  A
)  /\  ( B  e.  ZZ  /\  2  ||  B ) )  -> 
( A  +  B
)  e.  ZZ )
44 odd2np1 13592 . . 3  |-  ( ( A  +  B )  e.  ZZ  ->  ( -.  2  ||  ( A  +  B )  <->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( A  +  B ) ) )
4543, 44syl 16 . 2  |-  ( ( ( A  e.  ZZ  /\ 
-.  2  ||  A
)  /\  ( B  e.  ZZ  /\  2  ||  B ) )  -> 
( -.  2  ||  ( A  +  B
)  <->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( A  +  B ) ) )
4641, 45mpbird 232 1  |-  ( ( ( A  e.  ZZ  /\ 
-.  2  ||  A
)  /\  ( B  e.  ZZ  /\  2  ||  B ) )  ->  -.  2  ||  ( A  +  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   E.wrex 2716   class class class wbr 4292  (class class class)co 6091   CCcc 9280   1c1 9283    + caddc 9285    x. cmul 9287   2c2 10371   ZZcz 10646    || cdivides 13535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-recs 6832  df-rdg 6866  df-er 7101  df-en 7311  df-dom 7312  df-sdom 7313  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-div 9994  df-nn 10323  df-2 10380  df-n0 10580  df-z 10647  df-dvds 13536
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator