MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelxp2 Structured version   Unicode version

Theorem opelxp2 5039
Description: The second member of an ordered pair of classes in a Cartesian product belongs to second Cartesian product argument. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opelxp2  |-  ( <. A ,  B >.  e.  ( C  X.  D
)  ->  B  e.  D )

Proof of Theorem opelxp2
StepHypRef Expression
1 opelxp 5035 . 2  |-  ( <. A ,  B >.  e.  ( C  X.  D
)  <->  ( A  e.  C  /\  B  e.  D ) )
21simprbi 464 1  |-  ( <. A ,  B >.  e.  ( C  X.  D
)  ->  B  e.  D )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1767   <.cop 4039    X. cxp 5003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pr 4692
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-sn 4034  df-pr 4036  df-op 4040  df-opab 4512  df-xp 5011
This theorem is referenced by:  dff4  6046  eceqoveq  7428  isfin4-3  8707  axdc4lem  8847  canthp1lem2  9043  txcmplem1  20010  txlm  20017  brcgr  24026  nvex  25327  prsrn  27722  pprodss4v  29461
  Copyright terms: Public domain W3C validator