MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelxp1 Structured version   Unicode version

Theorem opelxp1 5038
Description: The first member of an ordered pair of classes in a Cartesian product belongs to first Cartesian product argument. (Contributed by NM, 28-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opelxp1  |-  ( <. A ,  B >.  e.  ( C  X.  D
)  ->  A  e.  C )

Proof of Theorem opelxp1
StepHypRef Expression
1 opelxp 5035 . 2  |-  ( <. A ,  B >.  e.  ( C  X.  D
)  <->  ( A  e.  C  /\  B  e.  D ) )
21simplbi 460 1  |-  ( <. A ,  B >.  e.  ( C  X.  D
)  ->  A  e.  C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1767   <.cop 4039    X. cxp 5003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pr 4692
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-sn 4034  df-pr 4036  df-op 4040  df-opab 4512  df-xp 5011
This theorem is referenced by:  otelxp1  5040  dff3  6045  ressnop0  6079  swoord1  7352  swoord2  7353  canthp1lem2  9043  txcmplem1  20010  txlm  20017  dvbsss  22174  vcoprnelem  25294  nvvcop  25310  nvvop  25325  prsdm  27721  linedegen  29720  opelopab3  30134
  Copyright terms: Public domain W3C validator