MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opeluu Unicode version

Theorem opeluu 4674
Description: Each member of an ordered pair belongs to the union of the union of a class to which the ordered pair belongs. Lemma 3D of [Enderton] p. 41. (Contributed by NM, 31-Mar-1995.) (Revised by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
opeluu.1  |-  A  e. 
_V
opeluu.2  |-  B  e. 
_V
Assertion
Ref Expression
opeluu  |-  ( <. A ,  B >.  e.  C  ->  ( A  e.  U. U. C  /\  B  e.  U. U. C
) )

Proof of Theorem opeluu
StepHypRef Expression
1 opeluu.1 . . . 4  |-  A  e. 
_V
21prid1 3872 . . 3  |-  A  e. 
{ A ,  B }
3 opeluu.2 . . . . 5  |-  B  e. 
_V
41, 3opi2 4391 . . . 4  |-  { A ,  B }  e.  <. A ,  B >.
5 elunii 3980 . . . 4  |-  ( ( { A ,  B }  e.  <. A ,  B >.  /\  <. A ,  B >.  e.  C )  ->  { A ,  B }  e.  U. C
)
64, 5mpan 652 . . 3  |-  ( <. A ,  B >.  e.  C  ->  { A ,  B }  e.  U. C )
7 elunii 3980 . . 3  |-  ( ( A  e.  { A ,  B }  /\  { A ,  B }  e.  U. C )  ->  A  e.  U. U. C
)
82, 6, 7sylancr 645 . 2  |-  ( <. A ,  B >.  e.  C  ->  A  e.  U.
U. C )
93prid2 3873 . . 3  |-  B  e. 
{ A ,  B }
10 elunii 3980 . . 3  |-  ( ( B  e.  { A ,  B }  /\  { A ,  B }  e.  U. C )  ->  B  e.  U. U. C
)
119, 6, 10sylancr 645 . 2  |-  ( <. A ,  B >.  e.  C  ->  B  e.  U.
U. C )
128, 11jca 519 1  |-  ( <. A ,  B >.  e.  C  ->  ( A  e.  U. U. C  /\  B  e.  U. U. C
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    e. wcel 1721   _Vcvv 2916   {cpr 3775   <.cop 3777   U.cuni 3975
This theorem is referenced by:  asymref  5209  asymref2  5210  wrdexb  11718
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-v 2918  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976
  Copyright terms: Public domain W3C validator