Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelrn Structured version   Unicode version

Theorem opelrn 5240
 Description: Membership of second member of an ordered pair in a range. (Contributed by NM, 23-Feb-1997.)
Hypotheses
Ref Expression
brelrn.1
brelrn.2
Assertion
Ref Expression
opelrn

Proof of Theorem opelrn
StepHypRef Expression
1 df-br 4454 . 2
2 brelrn.1 . . 3
3 brelrn.2 . . 3
42, 3brelrn 5239 . 2
51, 4sylbir 213 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wcel 1767  cvv 3118  cop 4039   class class class wbr 4453   crn 5006 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pr 4692 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-rab 2826  df-v 3120  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-sn 4034  df-pr 4036  df-op 4040  df-br 4454  df-opab 4512  df-cnv 5013  df-dm 5015  df-rn 5016 This theorem is referenced by:  zfrep6  6763  2ndrn  6843  disjen  7686  r0weon  8402  gsum2dlem1  16868  gsum2dlem2  16869  gsum2dOLD  16871  dfres3  29122
 Copyright terms: Public domain W3C validator