Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelresi Structured version   Unicode version

Theorem opelresi 5283
 Description: belongs to a restriction of the identity class iff belongs to the restricting class. (Contributed by FL, 27-Oct-2008.) (Revised by NM, 30-Mar-2016.)
Assertion
Ref Expression
opelresi

Proof of Theorem opelresi
StepHypRef Expression
1 opelresg 5279 . 2
2 ididg 5154 . . . 4
3 df-br 4448 . . . 4
42, 3sylib 196 . . 3
54biantrurd 508 . 2
61, 5bitr4d 256 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 184   wa 369   wcel 1767  cop 4033   class class class wbr 4447   cid 4790   cres 5001 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-br 4448  df-opab 4506  df-id 4795  df-xp 5005  df-rel 5006  df-res 5011 This theorem is referenced by:  issref  5378  ustfilxp  20450  ustelimasn  20460  metustfbasOLD  20803  metustfbas  20804
 Copyright terms: Public domain W3C validator