MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelresg Structured version   Unicode version

Theorem opelresg 5269
Description: Ordered pair membership in a restriction. Exercise 13 of [TakeutiZaring] p. 25. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
opelresg  |-  ( B  e.  V  ->  ( <. A ,  B >.  e.  ( C  |`  D )  <-> 
( <. A ,  B >.  e.  C  /\  A  e.  D ) ) )

Proof of Theorem opelresg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 opeq2 4204 . . 3  |-  ( y  =  B  ->  <. A , 
y >.  =  <. A ,  B >. )
21eleq1d 2523 . 2  |-  ( y  =  B  ->  ( <. A ,  y >.  e.  ( C  |`  D )  <->  <. A ,  B >.  e.  ( C  |`  D ) ) )
31eleq1d 2523 . . 3  |-  ( y  =  B  ->  ( <. A ,  y >.  e.  C  <->  <. A ,  B >.  e.  C ) )
43anbi1d 702 . 2  |-  ( y  =  B  ->  (
( <. A ,  y
>.  e.  C  /\  A  e.  D )  <->  ( <. A ,  B >.  e.  C  /\  A  e.  D
) ) )
5 vex 3109 . . 3  |-  y  e. 
_V
65opelres 5267 . 2  |-  ( <. A ,  y >.  e.  ( C  |`  D )  <-> 
( <. A ,  y
>.  e.  C  /\  A  e.  D ) )
72, 4, 6vtoclbg 3165 1  |-  ( B  e.  V  ->  ( <. A ,  B >.  e.  ( C  |`  D )  <-> 
( <. A ,  B >.  e.  C  /\  A  e.  D ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1398    e. wcel 1823   <.cop 4022    |` cres 4990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pr 4676
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-opab 4498  df-xp 4994  df-res 5000
This theorem is referenced by:  brresg  5270  opelresi  5273  issref  5368
  Copyright terms: Public domain W3C validator