MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelres Structured version   Unicode version

Theorem opelres 5267
Description: Ordered pair membership in a restriction. Exercise 13 of [TakeutiZaring] p. 25. (Contributed by NM, 13-Nov-1995.)
Hypothesis
Ref Expression
opelres.1  |-  B  e. 
_V
Assertion
Ref Expression
opelres  |-  ( <. A ,  B >.  e.  ( C  |`  D )  <-> 
( <. A ,  B >.  e.  C  /\  A  e.  D ) )

Proof of Theorem opelres
StepHypRef Expression
1 df-res 5000 . . 3  |-  ( C  |`  D )  =  ( C  i^i  ( D  X.  _V ) )
21eleq2i 2532 . 2  |-  ( <. A ,  B >.  e.  ( C  |`  D )  <->  <. A ,  B >.  e.  ( C  i^i  ( D  X.  _V ) ) )
3 elin 3673 . 2  |-  ( <. A ,  B >.  e.  ( C  i^i  ( D  X.  _V ) )  <-> 
( <. A ,  B >.  e.  C  /\  <. A ,  B >.  e.  ( D  X.  _V )
) )
4 opelres.1 . . . 4  |-  B  e. 
_V
5 opelxp 5018 . . . 4  |-  ( <. A ,  B >.  e.  ( D  X.  _V ) 
<->  ( A  e.  D  /\  B  e.  _V ) )
64, 5mpbiran2 917 . . 3  |-  ( <. A ,  B >.  e.  ( D  X.  _V ) 
<->  A  e.  D )
76anbi2i 692 . 2  |-  ( (
<. A ,  B >.  e.  C  /\  <. A ,  B >.  e.  ( D  X.  _V ) )  <-> 
( <. A ,  B >.  e.  C  /\  A  e.  D ) )
82, 3, 73bitri 271 1  |-  ( <. A ,  B >.  e.  ( C  |`  D )  <-> 
( <. A ,  B >.  e.  C  /\  A  e.  D ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 367    e. wcel 1823   _Vcvv 3106    i^i cin 3460   <.cop 4022    X. cxp 4986    |` cres 4990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pr 4676
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-opab 4498  df-xp 4994  df-res 5000
This theorem is referenced by:  brres  5268  opelresg  5269  opres  5271  dmres  5282  elres  5297  relssres  5299  iss  5309  restidsing  5318  asymref  5371  ssrnres  5430  cnvresima  5479  ressn  5526  funssres  5610  fcnvres  5744  fvn0ssdmfun  5998  resiexg  6709  relexpindlem  12981  dprd2dlem1  17288  dprd2da  17289  hausdiag  20315  hauseqlcld  20316  ovoliunlem1  22082  h2hlm  26098
  Copyright terms: Public domain W3C validator