MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelreal Structured version   Unicode version

Theorem opelreal 9297
Description: Ordered pair membership in class of real subset of complex numbers. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
opelreal  |-  ( <. A ,  0R >.  e.  RR  <->  A  e.  R. )

Proof of Theorem opelreal
StepHypRef Expression
1 eqid 2443 . 2  |-  0R  =  0R
2 df-r 9292 . . . 4  |-  RR  =  ( R.  X.  { 0R } )
32eleq2i 2507 . . 3  |-  ( <. A ,  0R >.  e.  RR  <->  <. A ,  0R >.  e.  ( R.  X.  { 0R } ) )
4 opelxp 4869 . . 3  |-  ( <. A ,  0R >.  e.  ( R.  X.  { 0R } )  <->  ( A  e.  R.  /\  0R  e.  { 0R } ) )
5 0r 9247 . . . . . 6  |-  0R  e.  R.
65elexi 2982 . . . . 5  |-  0R  e.  _V
76elsnc 3901 . . . 4  |-  ( 0R  e.  { 0R }  <->  0R  =  0R )
87anbi2i 694 . . 3  |-  ( ( A  e.  R.  /\  0R  e.  { 0R }
)  <->  ( A  e. 
R.  /\  0R  =  0R ) )
93, 4, 83bitri 271 . 2  |-  ( <. A ,  0R >.  e.  RR  <->  ( A  e.  R.  /\  0R  =  0R )
)
101, 9mpbiran2 910 1  |-  ( <. A ,  0R >.  e.  RR  <->  A  e.  R. )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   {csn 3877   <.cop 3883    X. cxp 4838   R.cnr 9034   0Rc0r 9035   RRcr 9281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-inf2 7847
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-1st 6577  df-2nd 6578  df-recs 6832  df-rdg 6866  df-1o 6920  df-oadd 6924  df-omul 6925  df-er 7101  df-ec 7103  df-qs 7107  df-ni 9041  df-pli 9042  df-mi 9043  df-lti 9044  df-plpq 9077  df-mpq 9078  df-ltpq 9079  df-enq 9080  df-nq 9081  df-erq 9082  df-plq 9083  df-mq 9084  df-1nq 9085  df-rq 9086  df-ltnq 9087  df-np 9150  df-1p 9151  df-enr 9226  df-nr 9227  df-0r 9231  df-r 9292
This theorem is referenced by:  ltresr  9307  ax1cn  9316  axaddrcl  9319  axmulrcl  9321  axrnegex  9329  axrrecex  9330  axcnre  9331  axpre-sup  9336
  Copyright terms: Public domain W3C validator