MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelopabsb Structured version   Unicode version

Theorem opelopabsb 4699
Description: The law of concretion in terms of substitutions. (Contributed by NM, 30-Sep-2002.) (Revised by Mario Carneiro, 18-Nov-2016.)
Assertion
Ref Expression
opelopabsb  |-  ( <. A ,  B >.  e. 
{ <. x ,  y
>.  |  ph }  <->  [. A  /  x ]. [. B  / 
y ]. ph )
Distinct variable groups:    x, y    x, B
Allowed substitution hints:    ph( x, y)    A( x, y)    B( y)

Proof of Theorem opelopabsb
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3061 . . . . . . . . . 10  |-  x  e. 
_V
2 vex 3061 . . . . . . . . . 10  |-  y  e. 
_V
31, 2opnzi 4662 . . . . . . . . 9  |-  <. x ,  y >.  =/=  (/)
4 simpl 455 . . . . . . . . . . 11  |-  ( (
(/)  =  <. x ,  y >.  /\  ph )  ->  (/)  =  <. x ,  y >. )
54eqcomd 2410 . . . . . . . . . 10  |-  ( (
(/)  =  <. x ,  y >.  /\  ph )  ->  <. x ,  y
>.  =  (/) )
65necon3ai 2631 . . . . . . . . 9  |-  ( <.
x ,  y >.  =/=  (/)  ->  -.  ( (/)  =  <. x ,  y
>.  /\  ph ) )
73, 6ax-mp 5 . . . . . . . 8  |-  -.  ( (/)  =  <. x ,  y
>.  /\  ph )
87nex 1648 . . . . . . 7  |-  -.  E. y ( (/)  =  <. x ,  y >.  /\  ph )
98nex 1648 . . . . . 6  |-  -.  E. x E. y ( (/)  =  <. x ,  y
>.  /\  ph )
10 elopab 4697 . . . . . 6  |-  ( (/)  e.  { <. x ,  y
>.  |  ph }  <->  E. x E. y ( (/)  =  <. x ,  y >.  /\  ph ) )
119, 10mtbir 297 . . . . 5  |-  -.  (/)  e.  { <. x ,  y >.  |  ph }
12 eleq1 2474 . . . . 5  |-  ( <. A ,  B >.  =  (/)  ->  ( <. A ,  B >.  e.  { <. x ,  y >.  |  ph } 
<->  (/)  e.  { <. x ,  y >.  |  ph } ) )
1311, 12mtbiri 301 . . . 4  |-  ( <. A ,  B >.  =  (/)  ->  -.  <. A ,  B >.  e.  { <. x ,  y >.  |  ph } )
1413necon2ai 2638 . . 3  |-  ( <. A ,  B >.  e. 
{ <. x ,  y
>.  |  ph }  ->  <. A ,  B >.  =/=  (/) )
15 opnz 4661 . . 3  |-  ( <. A ,  B >.  =/=  (/) 
<->  ( A  e.  _V  /\  B  e.  _V )
)
1614, 15sylib 196 . 2  |-  ( <. A ,  B >.  e. 
{ <. x ,  y
>.  |  ph }  ->  ( A  e.  _V  /\  B  e.  _V )
)
17 sbcex 3286 . . 3  |-  ( [. A  /  x ]. [. B  /  y ]. ph  ->  A  e.  _V )
18 spesbc 3358 . . . 4  |-  ( [. A  /  x ]. [. B  /  y ]. ph  ->  E. x [. B  / 
y ]. ph )
19 sbcex 3286 . . . . 5  |-  ( [. B  /  y ]. ph  ->  B  e.  _V )
2019exlimiv 1743 . . . 4  |-  ( E. x [. B  / 
y ]. ph  ->  B  e.  _V )
2118, 20syl 17 . . 3  |-  ( [. A  /  x ]. [. B  /  y ]. ph  ->  B  e.  _V )
2217, 21jca 530 . 2  |-  ( [. A  /  x ]. [. B  /  y ]. ph  ->  ( A  e.  _V  /\  B  e.  _V )
)
23 opeq1 4158 . . . . 5  |-  ( z  =  A  ->  <. z ,  w >.  =  <. A ,  w >. )
2423eleq1d 2471 . . . 4  |-  ( z  =  A  ->  ( <. z ,  w >.  e. 
{ <. x ,  y
>.  |  ph }  <->  <. A ,  w >.  e.  { <. x ,  y >.  |  ph } ) )
25 dfsbcq2 3279 . . . 4  |-  ( z  =  A  ->  ( [ z  /  x ] [ w  /  y ] ph  <->  [. A  /  x ]. [ w  /  y ] ph ) )
2624, 25bibi12d 319 . . 3  |-  ( z  =  A  ->  (
( <. z ,  w >.  e.  { <. x ,  y >.  |  ph } 
<->  [ z  /  x ] [ w  /  y ] ph )  <->  ( <. A ,  w >.  e.  { <. x ,  y >.  |  ph }  <->  [. A  /  x ]. [ w  / 
y ] ph )
) )
27 opeq2 4159 . . . . 5  |-  ( w  =  B  ->  <. A ,  w >.  =  <. A ,  B >. )
2827eleq1d 2471 . . . 4  |-  ( w  =  B  ->  ( <. A ,  w >.  e. 
{ <. x ,  y
>.  |  ph }  <->  <. A ,  B >.  e.  { <. x ,  y >.  |  ph } ) )
29 dfsbcq2 3279 . . . . 5  |-  ( w  =  B  ->  ( [ w  /  y ] ph  <->  [. B  /  y ]. ph ) )
3029sbcbidv 3331 . . . 4  |-  ( w  =  B  ->  ( [. A  /  x ]. [ w  /  y ] ph  <->  [. A  /  x ]. [. B  /  y ]. ph ) )
3128, 30bibi12d 319 . . 3  |-  ( w  =  B  ->  (
( <. A ,  w >.  e.  { <. x ,  y >.  |  ph } 
<-> 
[. A  /  x ]. [ w  /  y ] ph )  <->  ( <. A ,  B >.  e.  { <. x ,  y >.  |  ph }  <->  [. A  /  x ]. [. B  / 
y ]. ph ) ) )
32 nfopab1 4460 . . . . . 6  |-  F/_ x { <. x ,  y
>.  |  ph }
3332nfel2 2582 . . . . 5  |-  F/ x <. z ,  w >.  e. 
{ <. x ,  y
>.  |  ph }
34 nfs1v 2205 . . . . 5  |-  F/ x [ z  /  x ] [ w  /  y ] ph
3533, 34nfbi 1962 . . . 4  |-  F/ x
( <. z ,  w >.  e.  { <. x ,  y >.  |  ph } 
<->  [ z  /  x ] [ w  /  y ] ph )
36 opeq1 4158 . . . . . 6  |-  ( x  =  z  ->  <. x ,  w >.  =  <. z ,  w >. )
3736eleq1d 2471 . . . . 5  |-  ( x  =  z  ->  ( <. x ,  w >.  e. 
{ <. x ,  y
>.  |  ph }  <->  <. z ,  w >.  e.  { <. x ,  y >.  |  ph } ) )
38 sbequ12 2020 . . . . 5  |-  ( x  =  z  ->  ( [ w  /  y ] ph  <->  [ z  /  x ] [ w  /  y ] ph ) )
3937, 38bibi12d 319 . . . 4  |-  ( x  =  z  ->  (
( <. x ,  w >.  e.  { <. x ,  y >.  |  ph } 
<->  [ w  /  y ] ph )  <->  ( <. z ,  w >.  e.  { <. x ,  y >.  |  ph }  <->  [ z  /  x ] [ w  /  y ] ph ) ) )
40 nfopab2 4461 . . . . . . 7  |-  F/_ y { <. x ,  y
>.  |  ph }
4140nfel2 2582 . . . . . 6  |-  F/ y
<. x ,  w >.  e. 
{ <. x ,  y
>.  |  ph }
42 nfs1v 2205 . . . . . 6  |-  F/ y [ w  /  y ] ph
4341, 42nfbi 1962 . . . . 5  |-  F/ y ( <. x ,  w >.  e.  { <. x ,  y >.  |  ph } 
<->  [ w  /  y ] ph )
44 opeq2 4159 . . . . . . 7  |-  ( y  =  w  ->  <. x ,  y >.  =  <. x ,  w >. )
4544eleq1d 2471 . . . . . 6  |-  ( y  =  w  ->  ( <. x ,  y >.  e.  { <. x ,  y
>.  |  ph }  <->  <. x ,  w >.  e.  { <. x ,  y >.  |  ph } ) )
46 sbequ12 2020 . . . . . 6  |-  ( y  =  w  ->  ( ph 
<->  [ w  /  y ] ph ) )
4745, 46bibi12d 319 . . . . 5  |-  ( y  =  w  ->  (
( <. x ,  y
>.  e.  { <. x ,  y >.  |  ph } 
<-> 
ph )  <->  ( <. x ,  w >.  e.  { <. x ,  y >.  |  ph }  <->  [ w  /  y ] ph ) ) )
48 opabid 4696 . . . . 5  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  ph }  <->  ph )
4943, 47, 48chvar 2040 . . . 4  |-  ( <.
x ,  w >.  e. 
{ <. x ,  y
>.  |  ph }  <->  [ w  /  y ] ph )
5035, 39, 49chvar 2040 . . 3  |-  ( <.
z ,  w >.  e. 
{ <. x ,  y
>.  |  ph }  <->  [ z  /  x ] [ w  /  y ] ph )
5126, 31, 50vtocl2g 3120 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( <. A ,  B >.  e.  { <. x ,  y >.  |  ph } 
<-> 
[. A  /  x ]. [. B  /  y ]. ph ) )
5216, 22, 51pm5.21nii 351 1  |-  ( <. A ,  B >.  e. 
{ <. x ,  y
>.  |  ph }  <->  [. A  /  x ]. [. B  / 
y ]. ph )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 184    /\ wa 367    = wceq 1405   E.wex 1633   [wsb 1763    e. wcel 1842    =/= wne 2598   _Vcvv 3058   [.wsbc 3276   (/)c0 3737   <.cop 3977   {copab 4451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4516  ax-nul 4524  ax-pr 4629
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rex 2759  df-rab 2762  df-v 3060  df-sbc 3277  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-nul 3738  df-if 3885  df-sn 3972  df-pr 3974  df-op 3978  df-opab 4453
This theorem is referenced by:  brabsb  4700  opelopabgf  4709  opelopabaf  4713  opelopabf  4714  difopab  4954  isarep1  5647  fmptsnd  6072
  Copyright terms: Public domain W3C validator