Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opelopab3 Structured version   Unicode version

Theorem opelopab3 30450
Description: Ordered pair membership in an ordered pair class abstraction, with a reduced hypothesis. (Contributed by Jeff Madsen, 29-May-2011.)
Hypotheses
Ref Expression
opelopab3.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
opelopab3.2  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
opelopab3.3  |-  ( ch 
->  A  e.  C
)
Assertion
Ref Expression
opelopab3  |-  ( B  e.  D  ->  ( <. A ,  B >.  e. 
{ <. x ,  y
>.  |  ph }  <->  ch )
)
Distinct variable groups:    x, A, y    x, B, y    ch, x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)    C( x, y)    D( x, y)

Proof of Theorem opelopab3
StepHypRef Expression
1 elopaelxp 5061 . . . . 5  |-  ( <. A ,  B >.  e. 
{ <. x ,  y
>.  |  ph }  ->  <. A ,  B >.  e.  ( _V  X.  _V ) )
2 opelxp1 5021 . . . . 5  |-  ( <. A ,  B >.  e.  ( _V  X.  _V )  ->  A  e.  _V )
31, 2syl 16 . . . 4  |-  ( <. A ,  B >.  e. 
{ <. x ,  y
>.  |  ph }  ->  A  e.  _V )
43anim1i 566 . . 3  |-  ( (
<. A ,  B >.  e. 
{ <. x ,  y
>.  |  ph }  /\  B  e.  D )  ->  ( A  e.  _V  /\  B  e.  D ) )
54ancoms 451 . 2  |-  ( ( B  e.  D  /\  <. A ,  B >.  e. 
{ <. x ,  y
>.  |  ph } )  ->  ( A  e. 
_V  /\  B  e.  D ) )
6 opelopab3.3 . . . . 5  |-  ( ch 
->  A  e.  C
)
7 elex 3115 . . . . 5  |-  ( A  e.  C  ->  A  e.  _V )
86, 7syl 16 . . . 4  |-  ( ch 
->  A  e.  _V )
98anim1i 566 . . 3  |-  ( ( ch  /\  B  e.  D )  ->  ( A  e.  _V  /\  B  e.  D ) )
109ancoms 451 . 2  |-  ( ( B  e.  D  /\  ch )  ->  ( A  e.  _V  /\  B  e.  D ) )
11 opelopab3.1 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
12 opelopab3.2 . . 3  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
1311, 12opelopabg 4754 . 2  |-  ( ( A  e.  _V  /\  B  e.  D )  ->  ( <. A ,  B >.  e.  { <. x ,  y >.  |  ph } 
<->  ch ) )
145, 10, 13pm5.21nd 898 1  |-  ( B  e.  D  ->  ( <. A ,  B >.  e. 
{ <. x ,  y
>.  |  ph }  <->  ch )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1398    e. wcel 1823   _Vcvv 3106   <.cop 4022   {copab 4496    X. cxp 4986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pr 4676
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-opab 4498  df-xp 4994
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator