Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelopab2a Structured version   Visualization version   Unicode version

Theorem opelopab2a 4716
 Description: Ordered pair membership in an ordered pair class abstraction. (Contributed by Mario Carneiro, 19-Dec-2013.)
Hypothesis
Ref Expression
opelopabga.1
Assertion
Ref Expression
opelopab2a
Distinct variable groups:   ,,   ,,   ,,   ,,   ,,
Allowed substitution hints:   (,)

Proof of Theorem opelopab2a
StepHypRef Expression
1 eleq1 2537 . . . . 5
2 eleq1 2537 . . . . 5
31, 2bi2anan9 890 . . . 4
4 opelopabga.1 . . . 4
53, 4anbi12d 725 . . 3
65opelopabga 4714 . 2
76bianabs 897 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 189   wa 376   wceq 1452   wcel 1904  cop 3965  copab 4453 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pr 4639 This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-rab 2765  df-v 3033  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-sn 3960  df-pr 3962  df-op 3966  df-opab 4455 This theorem is referenced by:  opelopab2  4722  brab2a  4889  brab2ga  4915  prdsleval  15453  isperp  24836
 Copyright terms: Public domain W3C validator