Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opeliun2xp Structured version   Visualization version   Unicode version

Theorem opeliun2xp 40439
Description: Membership of an ordered pair in a union of Cartesian products over its second component, analogous to opeliunxp 4864. (Contributed by AV, 30-Mar-2019.)
Assertion
Ref Expression
opeliun2xp  |-  ( <. C ,  y >.  e. 
U_ y  e.  B  ( A  X.  { y } )  <->  ( y  e.  B  /\  C  e.  A ) )

Proof of Theorem opeliun2xp
Dummy variables  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iun 4250 . . 3  |-  U_ y  e.  B  ( A  X.  { y } )  =  { x  |  E. y  e.  B  x  e.  ( A  X.  { y } ) }
21eleq2i 2522 . 2  |-  ( <. C ,  y >.  e. 
U_ y  e.  B  ( A  X.  { y } )  <->  <. C , 
y >.  e.  { x  |  E. y  e.  B  x  e.  ( A  X.  { y } ) } )
3 opex 4637 . . 3  |-  <. C , 
y >.  e.  _V
4 df-rex 2743 . . . . 5  |-  ( E. y  e.  B  x  e.  ( A  X.  { y } )  <->  E. y ( y  e.  B  /\  x  e.  ( A  X.  {
y } ) ) )
5 nfv 1765 . . . . . 6  |-  F/ z ( y  e.  B  /\  x  e.  ( A  X.  { y } ) )
6 nfs1v 2267 . . . . . . 7  |-  F/ y [ z  /  y ] y  e.  B
7 nfcsb1v 3347 . . . . . . . . 9  |-  F/_ y [_ z  /  y ]_ A
8 nfcv 2593 . . . . . . . . 9  |-  F/_ y { z }
97, 8nfxp 4839 . . . . . . . 8  |-  F/_ y
( [_ z  /  y ]_ A  X.  { z } )
109nfcri 2587 . . . . . . 7  |-  F/ y  x  e.  ( [_ z  /  y ]_ A  X.  { z } )
116, 10nfan 2016 . . . . . 6  |-  F/ y ( [ z  / 
y ] y  e.  B  /\  x  e.  ( [_ z  / 
y ]_ A  X.  {
z } ) )
12 sbequ12 2084 . . . . . . 7  |-  ( y  =  z  ->  (
y  e.  B  <->  [ z  /  y ] y  e.  B ) )
13 csbeq1a 3340 . . . . . . . . 9  |-  ( y  =  z  ->  A  =  [_ z  /  y ]_ A )
14 sneq 3946 . . . . . . . . 9  |-  ( y  =  z  ->  { y }  =  { z } )
1513, 14xpeq12d 4837 . . . . . . . 8  |-  ( y  =  z  ->  ( A  X.  { y } )  =  ( [_ z  /  y ]_ A  X.  { z } ) )
1615eleq2d 2515 . . . . . . 7  |-  ( y  =  z  ->  (
x  e.  ( A  X.  { y } )  <->  x  e.  ( [_ z  /  y ]_ A  X.  { z } ) ) )
1712, 16anbi12d 722 . . . . . 6  |-  ( y  =  z  ->  (
( y  e.  B  /\  x  e.  ( A  X.  { y } ) )  <->  ( [
z  /  y ] y  e.  B  /\  x  e.  ( [_ z  /  y ]_ A  X.  { z } ) ) ) )
185, 11, 17cbvex 2116 . . . . 5  |-  ( E. y ( y  e.  B  /\  x  e.  ( A  X.  {
y } ) )  <->  E. z ( [ z  /  y ] y  e.  B  /\  x  e.  ( [_ z  / 
y ]_ A  X.  {
z } ) ) )
194, 18bitri 257 . . . 4  |-  ( E. y  e.  B  x  e.  ( A  X.  { y } )  <->  E. z ( [ z  /  y ] y  e.  B  /\  x  e.  ( [_ z  / 
y ]_ A  X.  {
z } ) ) )
20 eleq1 2518 . . . . . 6  |-  ( x  =  <. C ,  y
>.  ->  ( x  e.  ( [_ z  / 
y ]_ A  X.  {
z } )  <->  <. C , 
y >.  e.  ( [_ z  /  y ]_ A  X.  { z } ) ) )
2120anbi2d 715 . . . . 5  |-  ( x  =  <. C ,  y
>.  ->  ( ( [ z  /  y ] y  e.  B  /\  x  e.  ( [_ z  /  y ]_ A  X.  { z } ) )  <->  ( [ z  /  y ] y  e.  B  /\  <. C ,  y >.  e.  (
[_ z  /  y ]_ A  X.  { z } ) ) ) )
2221exbidv 1772 . . . 4  |-  ( x  =  <. C ,  y
>.  ->  ( E. z
( [ z  / 
y ] y  e.  B  /\  x  e.  ( [_ z  / 
y ]_ A  X.  {
z } ) )  <->  E. z ( [ z  /  y ] y  e.  B  /\  <. C ,  y >.  e.  (
[_ z  /  y ]_ A  X.  { z } ) ) ) )
2319, 22syl5bb 265 . . 3  |-  ( x  =  <. C ,  y
>.  ->  ( E. y  e.  B  x  e.  ( A  X.  { y } )  <->  E. z
( [ z  / 
y ] y  e.  B  /\  <. C , 
y >.  e.  ( [_ z  /  y ]_ A  X.  { z } ) ) ) )
243, 23elab 3153 . 2  |-  ( <. C ,  y >.  e. 
{ x  |  E. y  e.  B  x  e.  ( A  X.  {
y } ) }  <->  E. z ( [ z  /  y ] y  e.  B  /\  <. C ,  y >.  e.  (
[_ z  /  y ]_ A  X.  { z } ) ) )
25 opelxp 4842 . . . . . 6  |-  ( <. C ,  y >.  e.  ( [_ z  / 
y ]_ A  X.  {
z } )  <->  ( C  e.  [_ z  /  y ]_ A  /\  y  e.  { z } ) )
2625anbi2i 705 . . . . 5  |-  ( ( [ z  /  y ] y  e.  B  /\  <. C ,  y
>.  e.  ( [_ z  /  y ]_ A  X.  { z } ) )  <->  ( [ z  /  y ] y  e.  B  /\  ( C  e.  [_ z  / 
y ]_ A  /\  y  e.  { z } ) ) )
27 an13 813 . . . . . 6  |-  ( ( [ z  /  y ] y  e.  B  /\  ( C  e.  [_ z  /  y ]_ A  /\  y  e.  { z } ) )  <->  ( y  e.  { z }  /\  ( C  e.  [_ z  /  y ]_ A  /\  [ z  /  y ] y  e.  B
) ) )
28 ancom 456 . . . . . . 7  |-  ( ( C  e.  [_ z  /  y ]_ A  /\  [ z  /  y ] y  e.  B
)  <->  ( [ z  /  y ] y  e.  B  /\  C  e.  [_ z  /  y ]_ A ) )
2928anbi2i 705 . . . . . 6  |-  ( ( y  e.  { z }  /\  ( C  e.  [_ z  / 
y ]_ A  /\  [
z  /  y ] y  e.  B ) )  <->  ( y  e. 
{ z }  /\  ( [ z  /  y ] y  e.  B  /\  C  e.  [_ z  /  y ]_ A
) ) )
3027, 29bitri 257 . . . . 5  |-  ( ( [ z  /  y ] y  e.  B  /\  ( C  e.  [_ z  /  y ]_ A  /\  y  e.  { z } ) )  <->  ( y  e.  { z }  /\  ( [ z  /  y ] y  e.  B  /\  C  e.  [_ z  /  y ]_ A
) ) )
31 elsn 3950 . . . . . . 7  |-  ( y  e.  { z }  <-> 
y  =  z )
32 equcom 1866 . . . . . . 7  |-  ( y  =  z  <->  z  =  y )
3331, 32bitri 257 . . . . . 6  |-  ( y  e.  { z }  <-> 
z  =  y )
3433anbi1i 706 . . . . 5  |-  ( ( y  e.  { z }  /\  ( [ z  /  y ] y  e.  B  /\  C  e.  [_ z  / 
y ]_ A ) )  <-> 
( z  =  y  /\  ( [ z  /  y ] y  e.  B  /\  C  e.  [_ z  /  y ]_ A ) ) )
3526, 30, 343bitri 279 . . . 4  |-  ( ( [ z  /  y ] y  e.  B  /\  <. C ,  y
>.  e.  ( [_ z  /  y ]_ A  X.  { z } ) )  <->  ( z  =  y  /\  ( [ z  /  y ] y  e.  B  /\  C  e.  [_ z  / 
y ]_ A ) ) )
3635exbii 1722 . . 3  |-  ( E. z ( [ z  /  y ] y  e.  B  /\  <. C ,  y >.  e.  (
[_ z  /  y ]_ A  X.  { z } ) )  <->  E. z
( z  =  y  /\  ( [ z  /  y ] y  e.  B  /\  C  e.  [_ z  /  y ]_ A ) ) )
37 vex 3016 . . . 4  |-  y  e. 
_V
38 sbequ12r 2085 . . . . 5  |-  ( z  =  y  ->  ( [ z  /  y ] y  e.  B  <->  y  e.  B ) )
3913equcoms 1868 . . . . . . 7  |-  ( z  =  y  ->  A  =  [_ z  /  y ]_ A )
4039eqcomd 2458 . . . . . 6  |-  ( z  =  y  ->  [_ z  /  y ]_ A  =  A )
4140eleq2d 2515 . . . . 5  |-  ( z  =  y  ->  ( C  e.  [_ z  / 
y ]_ A  <->  C  e.  A ) )
4238, 41anbi12d 722 . . . 4  |-  ( z  =  y  ->  (
( [ z  / 
y ] y  e.  B  /\  C  e. 
[_ z  /  y ]_ A )  <->  ( y  e.  B  /\  C  e.  A ) ) )
4337, 42ceqsexv 3052 . . 3  |-  ( E. z ( z  =  y  /\  ( [ z  /  y ] y  e.  B  /\  C  e.  [_ z  / 
y ]_ A ) )  <-> 
( y  e.  B  /\  C  e.  A
) )
4436, 43bitri 257 . 2  |-  ( E. z ( [ z  /  y ] y  e.  B  /\  <. C ,  y >.  e.  (
[_ z  /  y ]_ A  X.  { z } ) )  <->  ( y  e.  B  /\  C  e.  A ) )
452, 24, 443bitri 279 1  |-  ( <. C ,  y >.  e. 
U_ y  e.  B  ( A  X.  { y } )  <->  ( y  e.  B  /\  C  e.  A ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 189    /\ wa 375    = wceq 1448   E.wex 1667   [wsb 1801    e. wcel 1891   {cab 2438   E.wrex 2738   [_csb 3331   {csn 3936   <.cop 3942   U_ciun 4248    X. cxp 4810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1673  ax-4 1686  ax-5 1762  ax-6 1809  ax-7 1855  ax-9 1900  ax-10 1919  ax-11 1924  ax-12 1937  ax-13 2092  ax-ext 2432  ax-sep 4497  ax-nul 4506  ax-pr 4612
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3an 988  df-tru 1451  df-ex 1668  df-nf 1672  df-sb 1802  df-clab 2439  df-cleq 2445  df-clel 2448  df-nfc 2582  df-ne 2624  df-ral 2742  df-rex 2743  df-rab 2746  df-v 3015  df-sbc 3236  df-csb 3332  df-dif 3375  df-un 3377  df-in 3379  df-ss 3386  df-nul 3700  df-if 3850  df-sn 3937  df-pr 3939  df-op 3943  df-iun 4250  df-opab 4434  df-xp 4818
This theorem is referenced by:  eliunxp2  40440
  Copyright terms: Public domain W3C validator