MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelcnv Structured version   Unicode version

Theorem opelcnv 5175
Description: Ordered-pair membership in converse. (Contributed by NM, 13-Aug-1995.)
Hypotheses
Ref Expression
opelcnv.1  |-  A  e. 
_V
opelcnv.2  |-  B  e. 
_V
Assertion
Ref Expression
opelcnv  |-  ( <. A ,  B >.  e.  `' R  <->  <. B ,  A >.  e.  R )

Proof of Theorem opelcnv
StepHypRef Expression
1 opelcnv.1 . 2  |-  A  e. 
_V
2 opelcnv.2 . 2  |-  B  e. 
_V
3 opelcnvg 5173 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( <. A ,  B >.  e.  `' R  <->  <. B ,  A >.  e.  R ) )
41, 2, 3mp2an 672 1  |-  ( <. A ,  B >.  e.  `' R  <->  <. B ,  A >.  e.  R )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    e. wcel 1762   _Vcvv 3106   <.cop 4026   `'ccnv 4991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pr 4679
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-rab 2816  df-v 3108  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-sn 4021  df-pr 4023  df-op 4027  df-br 4441  df-opab 4499  df-cnv 5000
This theorem is referenced by:  cnvopab  5398  cnv0  5400  cnvdif  5403  dfrel2  5448  cnvcnvsn  5476  cnvresima  5487  dfco2  5497  cnviin  5535  fcnvres  5753  cnvf1olem  6871  cnvimadfsn  6900  dmtpos  6957  dftpos4  6964  tpostpos  6965  brsdom2  7631  fsumcom2  13538  gsumcom2  16787  metustsymOLD  20792  metustsym  20793  fprodcom2  28541  cnvco1  28616  cnvco2  28617
  Copyright terms: Public domain W3C validator