MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelcnv Structured version   Visualization version   Unicode version

Theorem opelcnv 5021
Description: Ordered-pair membership in converse. (Contributed by NM, 13-Aug-1995.)
Hypotheses
Ref Expression
opelcnv.1  |-  A  e. 
_V
opelcnv.2  |-  B  e. 
_V
Assertion
Ref Expression
opelcnv  |-  ( <. A ,  B >.  e.  `' R  <->  <. B ,  A >.  e.  R )

Proof of Theorem opelcnv
StepHypRef Expression
1 opelcnv.1 . 2  |-  A  e. 
_V
2 opelcnv.2 . 2  |-  B  e. 
_V
3 opelcnvg 5019 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( <. A ,  B >.  e.  `' R  <->  <. B ,  A >.  e.  R ) )
41, 2, 3mp2an 686 1  |-  ( <. A ,  B >.  e.  `' R  <->  <. B ,  A >.  e.  R )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 189    e. wcel 1904   _Vcvv 3031   <.cop 3965   `'ccnv 4838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pr 4639
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-rab 2765  df-v 3033  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-sn 3960  df-pr 3962  df-op 3966  df-br 4396  df-opab 4455  df-cnv 4847
This theorem is referenced by:  cnvopab  5243  cnv0  5245  cnvdif  5248  dfrel2  5292  cnvcnvsn  5320  cnvresima  5331  dfco2  5341  cnviin  5380  fcnvres  5773  cnvf1olem  6913  cnvimadfsn  6942  dmtpos  7003  dftpos4  7010  tpostpos  7011  brsdom2  7714  fsumcom2  13912  fprodcom2  14115  gsumcom2  17685  metustsym  21648  cnvco1  30471  cnvco2  30472  cnviun  36313
  Copyright terms: Public domain W3C validator