MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opcom Structured version   Visualization version   Unicode version

Theorem opcom 4695
Description: An ordered pair commutes iff its members are equal. (Contributed by NM, 28-May-2009.)
Hypotheses
Ref Expression
opcom.1  |-  A  e. 
_V
opcom.2  |-  B  e. 
_V
Assertion
Ref Expression
opcom  |-  ( <. A ,  B >.  = 
<. B ,  A >.  <->  A  =  B )

Proof of Theorem opcom
StepHypRef Expression
1 opcom.1 . . 3  |-  A  e. 
_V
2 opcom.2 . . 3  |-  B  e. 
_V
31, 2opth 4676 . 2  |-  ( <. A ,  B >.  = 
<. B ,  A >.  <->  ( A  =  B  /\  B  =  A )
)
4 eqcom 2458 . . 3  |-  ( B  =  A  <->  A  =  B )
54anbi2i 700 . 2  |-  ( ( A  =  B  /\  B  =  A )  <->  ( A  =  B  /\  A  =  B )
)
6 anidm 650 . 2  |-  ( ( A  =  B  /\  A  =  B )  <->  A  =  B )
73, 5, 63bitri 275 1  |-  ( <. A ,  B >.  = 
<. B ,  A >.  <->  A  =  B )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 188    /\ wa 371    = wceq 1444    e. wcel 1887   _Vcvv 3045   <.cop 3974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-sep 4525  ax-nul 4534  ax-pr 4639
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-rab 2746  df-v 3047  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-nul 3732  df-if 3882  df-sn 3969  df-pr 3971  df-op 3975
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator