MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabss Structured version   Unicode version

Theorem opabss 4428
Description: The collection of ordered pairs in a class is a subclass of it. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
opabss  |-  { <. x ,  y >.  |  x R y }  C_  R
Distinct variable groups:    x, R    y, R

Proof of Theorem opabss
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-opab 4426 . 2  |-  { <. x ,  y >.  |  x R y }  =  { z  |  E. x E. y ( z  =  <. x ,  y
>.  /\  x R y ) }
2 df-br 4368 . . . . 5  |-  ( x R y  <->  <. x ,  y >.  e.  R
)
3 eleq1 2454 . . . . . 6  |-  ( z  =  <. x ,  y
>.  ->  ( z  e.  R  <->  <. x ,  y
>.  e.  R ) )
43biimpar 483 . . . . 5  |-  ( ( z  =  <. x ,  y >.  /\  <. x ,  y >.  e.  R
)  ->  z  e.  R )
52, 4sylan2b 473 . . . 4  |-  ( ( z  =  <. x ,  y >.  /\  x R y )  -> 
z  e.  R )
65exlimivv 1731 . . 3  |-  ( E. x E. y ( z  =  <. x ,  y >.  /\  x R y )  -> 
z  e.  R )
76abssi 3489 . 2  |-  { z  |  E. x E. y ( z  = 
<. x ,  y >.  /\  x R y ) }  C_  R
81, 7eqsstri 3447 1  |-  { <. x ,  y >.  |  x R y }  C_  R
Colors of variables: wff setvar class
Syntax hints:    /\ wa 367    = wceq 1399   E.wex 1620    e. wcel 1826   {cab 2367    C_ wss 3389   <.cop 3950   class class class wbr 4367   {copab 4424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-in 3396  df-ss 3403  df-br 4368  df-opab 4426
This theorem is referenced by:  aceq3lem  8414  fullfunc  15312  fthfunc  15313  isfull  15316  isfth  15320
  Copyright terms: Public domain W3C validator