MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabresid Structured version   Unicode version

Theorem opabresid 5260
Description: The restricted identity expressed with the class builder. (Contributed by FL, 25-Apr-2012.)
Assertion
Ref Expression
opabresid  |-  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  x ) }  =  (  _I  |`  A )
Distinct variable group:    x, A, y

Proof of Theorem opabresid
StepHypRef Expression
1 resopab 5254 . 2  |-  ( {
<. x ,  y >.  |  y  =  x }  |`  A )  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  x ) }
2 equcom 1734 . . . . 5  |-  ( y  =  x  <->  x  =  y )
32opabbii 4457 . . . 4  |-  { <. x ,  y >.  |  y  =  x }  =  { <. x ,  y
>.  |  x  =  y }
4 dfid3 4738 . . . 4  |-  _I  =  { <. x ,  y
>.  |  x  =  y }
53, 4eqtr4i 2483 . . 3  |-  { <. x ,  y >.  |  y  =  x }  =  _I
65reseq1i 5207 . 2  |-  ( {
<. x ,  y >.  |  y  =  x }  |`  A )  =  (  _I  |`  A )
71, 6eqtr3i 2482 1  |-  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  x ) }  =  (  _I  |`  A )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    = wceq 1370    e. wcel 1758   {copab 4450    _I cid 4732    |` cres 4943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4514  ax-nul 4522  ax-pr 4632
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-rab 2804  df-v 3073  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-nul 3739  df-if 3893  df-sn 3979  df-pr 3981  df-op 3985  df-opab 4452  df-id 4737  df-xp 4947  df-rel 4948  df-res 4953
This theorem is referenced by:  mptresid  5261  pospo  15254  opsrtoslem1  17681  tgphaus  19812
  Copyright terms: Public domain W3C validator