MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabex3d Structured version   Unicode version

Theorem opabex3d 6724
Description: Existence of an ordered pair abstraction, deduction version. (Contributed by Alexander van der Vekens, 19-Oct-2017.)
Hypotheses
Ref Expression
opabex3d.1  |-  ( ph  ->  A  e.  _V )
opabex3d.2  |-  ( (
ph  /\  x  e.  A )  ->  { y  |  ps }  e.  _V )
Assertion
Ref Expression
opabex3d  |-  ( ph  ->  { <. x ,  y
>.  |  ( x  e.  A  /\  ps ) }  e.  _V )
Distinct variable groups:    x, A, y    ph, x
Allowed substitution hints:    ph( y)    ps( x, y)

Proof of Theorem opabex3d
Dummy variables  v  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.42v 1827 . . . . . 6  |-  ( E. y ( x  e.  A  /\  ( z  =  <. x ,  y
>.  /\  ps ) )  <-> 
( x  e.  A  /\  E. y ( z  =  <. x ,  y
>.  /\  ps ) ) )
2 an12 804 . . . . . . 7  |-  ( ( z  =  <. x ,  y >.  /\  (
x  e.  A  /\  ps ) )  <->  ( x  e.  A  /\  (
z  =  <. x ,  y >.  /\  ps ) ) )
32exbii 1712 . . . . . 6  |-  ( E. y ( z  = 
<. x ,  y >.  /\  ( x  e.  A  /\  ps ) )  <->  E. y
( x  e.  A  /\  ( z  =  <. x ,  y >.  /\  ps ) ) )
4 elxp 4808 . . . . . . . 8  |-  ( z  e.  ( { x }  X.  { y  |  ps } )  <->  E. v E. w ( z  = 
<. v ,  w >.  /\  ( v  e.  {
x }  /\  w  e.  { y  |  ps } ) ) )
5 excom 1903 . . . . . . . . 9  |-  ( E. v E. w ( z  =  <. v ,  w >.  /\  (
v  e.  { x }  /\  w  e.  {
y  |  ps }
) )  <->  E. w E. v ( z  = 
<. v ,  w >.  /\  ( v  e.  {
x }  /\  w  e.  { y  |  ps } ) ) )
6 an12 804 . . . . . . . . . . . . 13  |-  ( ( z  =  <. v ,  w >.  /\  (
v  e.  { x }  /\  w  e.  {
y  |  ps }
) )  <->  ( v  e.  { x }  /\  ( z  =  <. v ,  w >.  /\  w  e.  { y  |  ps } ) ) )
7 elsn 3950 . . . . . . . . . . . . . 14  |-  ( v  e.  { x }  <->  v  =  x )
87anbi1i 699 . . . . . . . . . . . . 13  |-  ( ( v  e.  { x }  /\  ( z  = 
<. v ,  w >.  /\  w  e.  { y  |  ps } ) )  <->  ( v  =  x  /\  ( z  =  <. v ,  w >.  /\  w  e.  {
y  |  ps }
) ) )
96, 8bitri 252 . . . . . . . . . . . 12  |-  ( ( z  =  <. v ,  w >.  /\  (
v  e.  { x }  /\  w  e.  {
y  |  ps }
) )  <->  ( v  =  x  /\  (
z  =  <. v ,  w >.  /\  w  e.  { y  |  ps } ) ) )
109exbii 1712 . . . . . . . . . . 11  |-  ( E. v ( z  = 
<. v ,  w >.  /\  ( v  e.  {
x }  /\  w  e.  { y  |  ps } ) )  <->  E. v
( v  =  x  /\  ( z  = 
<. v ,  w >.  /\  w  e.  { y  |  ps } ) ) )
11 vex 3020 . . . . . . . . . . . 12  |-  x  e. 
_V
12 opeq1 4125 . . . . . . . . . . . . . 14  |-  ( v  =  x  ->  <. v ,  w >.  =  <. x ,  w >. )
1312eqeq2d 2433 . . . . . . . . . . . . 13  |-  ( v  =  x  ->  (
z  =  <. v ,  w >.  <->  z  =  <. x ,  w >. )
)
1413anbi1d 709 . . . . . . . . . . . 12  |-  ( v  =  x  ->  (
( z  =  <. v ,  w >.  /\  w  e.  { y  |  ps } )  <->  ( z  =  <. x ,  w >.  /\  w  e.  {
y  |  ps }
) ) )
1511, 14ceqsexv 3055 . . . . . . . . . . 11  |-  ( E. v ( v  =  x  /\  ( z  =  <. v ,  w >.  /\  w  e.  {
y  |  ps }
) )  <->  ( z  =  <. x ,  w >.  /\  w  e.  {
y  |  ps }
) )
1610, 15bitri 252 . . . . . . . . . 10  |-  ( E. v ( z  = 
<. v ,  w >.  /\  ( v  e.  {
x }  /\  w  e.  { y  |  ps } ) )  <->  ( z  =  <. x ,  w >.  /\  w  e.  {
y  |  ps }
) )
1716exbii 1712 . . . . . . . . 9  |-  ( E. w E. v ( z  =  <. v ,  w >.  /\  (
v  e.  { x }  /\  w  e.  {
y  |  ps }
) )  <->  E. w
( z  =  <. x ,  w >.  /\  w  e.  { y  |  ps } ) )
185, 17bitri 252 . . . . . . . 8  |-  ( E. v E. w ( z  =  <. v ,  w >.  /\  (
v  e.  { x }  /\  w  e.  {
y  |  ps }
) )  <->  E. w
( z  =  <. x ,  w >.  /\  w  e.  { y  |  ps } ) )
19 nfv 1755 . . . . . . . . . 10  |-  F/ y  z  =  <. x ,  w >.
20 nfsab1 2413 . . . . . . . . . 10  |-  F/ y  w  e.  { y  |  ps }
2119, 20nfan 1988 . . . . . . . . 9  |-  F/ y ( z  =  <. x ,  w >.  /\  w  e.  { y  |  ps } )
22 nfv 1755 . . . . . . . . 9  |-  F/ w
( z  =  <. x ,  y >.  /\  ps )
23 opeq2 4126 . . . . . . . . . . 11  |-  ( w  =  y  ->  <. x ,  w >.  =  <. x ,  y >. )
2423eqeq2d 2433 . . . . . . . . . 10  |-  ( w  =  y  ->  (
z  =  <. x ,  w >.  <->  z  =  <. x ,  y >. )
)
25 sbequ12 2052 . . . . . . . . . . . 12  |-  ( y  =  w  ->  ( ps 
<->  [ w  /  y ] ps ) )
2625equcoms 1849 . . . . . . . . . . 11  |-  ( w  =  y  ->  ( ps 
<->  [ w  /  y ] ps ) )
27 df-clab 2410 . . . . . . . . . . 11  |-  ( w  e.  { y  |  ps }  <->  [ w  /  y ] ps )
2826, 27syl6rbbr 267 . . . . . . . . . 10  |-  ( w  =  y  ->  (
w  e.  { y  |  ps }  <->  ps )
)
2924, 28anbi12d 715 . . . . . . . . 9  |-  ( w  =  y  ->  (
( z  =  <. x ,  w >.  /\  w  e.  { y  |  ps } )  <->  ( z  =  <. x ,  y
>.  /\  ps ) ) )
3021, 22, 29cbvex 2082 . . . . . . . 8  |-  ( E. w ( z  = 
<. x ,  w >.  /\  w  e.  { y  |  ps } )  <->  E. y ( z  = 
<. x ,  y >.  /\  ps ) )
314, 18, 303bitri 274 . . . . . . 7  |-  ( z  e.  ( { x }  X.  { y  |  ps } )  <->  E. y
( z  =  <. x ,  y >.  /\  ps ) )
3231anbi2i 698 . . . . . 6  |-  ( ( x  e.  A  /\  z  e.  ( {
x }  X.  {
y  |  ps }
) )  <->  ( x  e.  A  /\  E. y
( z  =  <. x ,  y >.  /\  ps ) ) )
331, 3, 323bitr4ri 281 . . . . 5  |-  ( ( x  e.  A  /\  z  e.  ( {
x }  X.  {
y  |  ps }
) )  <->  E. y
( z  =  <. x ,  y >.  /\  (
x  e.  A  /\  ps ) ) )
3433exbii 1712 . . . 4  |-  ( E. x ( x  e.  A  /\  z  e.  ( { x }  X.  { y  |  ps } ) )  <->  E. x E. y ( z  = 
<. x ,  y >.  /\  ( x  e.  A  /\  ps ) ) )
35 eliun 4242 . . . . 5  |-  ( z  e.  U_ x  e.  A  ( { x }  X.  { y  |  ps } )  <->  E. x  e.  A  z  e.  ( { x }  X.  { y  |  ps } ) )
36 df-rex 2715 . . . . 5  |-  ( E. x  e.  A  z  e.  ( { x }  X.  { y  |  ps } )  <->  E. x
( x  e.  A  /\  z  e.  ( { x }  X.  { y  |  ps } ) ) )
3735, 36bitri 252 . . . 4  |-  ( z  e.  U_ x  e.  A  ( { x }  X.  { y  |  ps } )  <->  E. x
( x  e.  A  /\  z  e.  ( { x }  X.  { y  |  ps } ) ) )
38 elopab 4666 . . . 4  |-  ( z  e.  { <. x ,  y >.  |  ( x  e.  A  /\  ps ) }  <->  E. x E. y ( z  = 
<. x ,  y >.  /\  ( x  e.  A  /\  ps ) ) )
3934, 37, 383bitr4i 280 . . 3  |-  ( z  e.  U_ x  e.  A  ( { x }  X.  { y  |  ps } )  <->  z  e.  {
<. x ,  y >.  |  ( x  e.  A  /\  ps ) } )
4039eqriv 2420 . 2  |-  U_ x  e.  A  ( {
x }  X.  {
y  |  ps }
)  =  { <. x ,  y >.  |  ( x  e.  A  /\  ps ) }
41 opabex3d.1 . . 3  |-  ( ph  ->  A  e.  _V )
42 snex 4600 . . . . 5  |-  { x }  e.  _V
43 opabex3d.2 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  { y  |  ps }  e.  _V )
44 xpexg 6546 . . . . 5  |-  ( ( { x }  e.  _V  /\  { y  |  ps }  e.  _V )  ->  ( { x }  X.  { y  |  ps } )  e. 
_V )
4542, 43, 44sylancr 667 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ( { x }  X.  { y  |  ps } )  e.  _V )
4645ralrimiva 2774 . . 3  |-  ( ph  ->  A. x  e.  A  ( { x }  X.  { y  |  ps } )  e.  _V )
47 iunexg 6722 . . 3  |-  ( ( A  e.  _V  /\  A. x  e.  A  ( { x }  X.  { y  |  ps } )  e.  _V )  ->  U_ x  e.  A  ( { x }  X.  { y  |  ps } )  e.  _V )
4841, 46, 47syl2anc 665 . 2  |-  ( ph  ->  U_ x  e.  A  ( { x }  X.  { y  |  ps } )  e.  _V )
4940, 48syl5eqelr 2506 1  |-  ( ph  ->  { <. x ,  y
>.  |  ( x  e.  A  /\  ps ) }  e.  _V )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437   E.wex 1657   [wsb 1790    e. wcel 1872   {cab 2409   A.wral 2709   E.wrex 2710   _Vcvv 3017   {csn 3936   <.cop 3942   U_ciun 4237   {copab 4419    X. cxp 4789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2058  ax-ext 2403  ax-rep 4474  ax-sep 4484  ax-nul 4493  ax-pow 4540  ax-pr 4598  ax-un 6536
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2275  df-mo 2276  df-clab 2410  df-cleq 2416  df-clel 2419  df-nfc 2553  df-ne 2596  df-ral 2714  df-rex 2715  df-reu 2716  df-rab 2718  df-v 3019  df-sbc 3238  df-csb 3334  df-dif 3377  df-un 3379  df-in 3381  df-ss 3388  df-nul 3700  df-if 3850  df-pw 3921  df-sn 3937  df-pr 3939  df-op 3943  df-uni 4158  df-iun 4239  df-br 4362  df-opab 4421  df-mpt 4422  df-id 4706  df-xp 4797  df-rel 4798  df-cnv 4799  df-co 4800  df-dm 4801  df-rn 4802  df-res 4803  df-ima 4804  df-iota 5503  df-fun 5541  df-fn 5542  df-f 5543  df-f1 5544  df-fo 5545  df-f1o 5546  df-fv 5547
This theorem is referenced by:  wlks  25184  wlkres  25187  trls  25203  crcts  25287  cycls  25288  fpwrelmap  28263
  Copyright terms: Public domain W3C validator