MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabex3 Unicode version

Theorem opabex3 5949
Description: Existence of an ordered pair abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
opabex3.1  |-  A  e. 
_V
opabex3.2  |-  ( x  e.  A  ->  { y  |  ph }  e.  _V )
Assertion
Ref Expression
opabex3  |-  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  e.  _V
Distinct variable group:    x, A, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem opabex3
Dummy variables  v  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.42v 1924 . . . . . 6  |-  ( E. y ( x  e.  A  /\  ( z  =  <. x ,  y
>.  /\  ph ) )  <-> 
( x  e.  A  /\  E. y ( z  =  <. x ,  y
>.  /\  ph ) ) )
2 an12 773 . . . . . . 7  |-  ( ( z  =  <. x ,  y >.  /\  (
x  e.  A  /\  ph ) )  <->  ( x  e.  A  /\  (
z  =  <. x ,  y >.  /\  ph ) ) )
32exbii 1589 . . . . . 6  |-  ( E. y ( z  = 
<. x ,  y >.  /\  ( x  e.  A  /\  ph ) )  <->  E. y
( x  e.  A  /\  ( z  =  <. x ,  y >.  /\  ph ) ) )
4 elxp 4854 . . . . . . . 8  |-  ( z  e.  ( { x }  X.  { y  | 
ph } )  <->  E. v E. w ( z  = 
<. v ,  w >.  /\  ( v  e.  {
x }  /\  w  e.  { y  |  ph } ) ) )
5 excom 1752 . . . . . . . . 9  |-  ( E. v E. w ( z  =  <. v ,  w >.  /\  (
v  e.  { x }  /\  w  e.  {
y  |  ph }
) )  <->  E. w E. v ( z  = 
<. v ,  w >.  /\  ( v  e.  {
x }  /\  w  e.  { y  |  ph } ) ) )
6 an12 773 . . . . . . . . . . . . 13  |-  ( ( z  =  <. v ,  w >.  /\  (
v  e.  { x }  /\  w  e.  {
y  |  ph }
) )  <->  ( v  e.  { x }  /\  ( z  =  <. v ,  w >.  /\  w  e.  { y  |  ph } ) ) )
7 elsn 3789 . . . . . . . . . . . . . 14  |-  ( v  e.  { x }  <->  v  =  x )
87anbi1i 677 . . . . . . . . . . . . 13  |-  ( ( v  e.  { x }  /\  ( z  = 
<. v ,  w >.  /\  w  e.  { y  |  ph } ) )  <->  ( v  =  x  /\  ( z  =  <. v ,  w >.  /\  w  e.  {
y  |  ph }
) ) )
96, 8bitri 241 . . . . . . . . . . . 12  |-  ( ( z  =  <. v ,  w >.  /\  (
v  e.  { x }  /\  w  e.  {
y  |  ph }
) )  <->  ( v  =  x  /\  (
z  =  <. v ,  w >.  /\  w  e.  { y  |  ph } ) ) )
109exbii 1589 . . . . . . . . . . 11  |-  ( E. v ( z  = 
<. v ,  w >.  /\  ( v  e.  {
x }  /\  w  e.  { y  |  ph } ) )  <->  E. v
( v  =  x  /\  ( z  = 
<. v ,  w >.  /\  w  e.  { y  |  ph } ) ) )
11 vex 2919 . . . . . . . . . . . 12  |-  x  e. 
_V
12 opeq1 3944 . . . . . . . . . . . . . 14  |-  ( v  =  x  ->  <. v ,  w >.  =  <. x ,  w >. )
1312eqeq2d 2415 . . . . . . . . . . . . 13  |-  ( v  =  x  ->  (
z  =  <. v ,  w >.  <->  z  =  <. x ,  w >. )
)
1413anbi1d 686 . . . . . . . . . . . 12  |-  ( v  =  x  ->  (
( z  =  <. v ,  w >.  /\  w  e.  { y  |  ph } )  <->  ( z  =  <. x ,  w >.  /\  w  e.  {
y  |  ph }
) ) )
1511, 14ceqsexv 2951 . . . . . . . . . . 11  |-  ( E. v ( v  =  x  /\  ( z  =  <. v ,  w >.  /\  w  e.  {
y  |  ph }
) )  <->  ( z  =  <. x ,  w >.  /\  w  e.  {
y  |  ph }
) )
1610, 15bitri 241 . . . . . . . . . 10  |-  ( E. v ( z  = 
<. v ,  w >.  /\  ( v  e.  {
x }  /\  w  e.  { y  |  ph } ) )  <->  ( z  =  <. x ,  w >.  /\  w  e.  {
y  |  ph }
) )
1716exbii 1589 . . . . . . . . 9  |-  ( E. w E. v ( z  =  <. v ,  w >.  /\  (
v  e.  { x }  /\  w  e.  {
y  |  ph }
) )  <->  E. w
( z  =  <. x ,  w >.  /\  w  e.  { y  |  ph } ) )
185, 17bitri 241 . . . . . . . 8  |-  ( E. v E. w ( z  =  <. v ,  w >.  /\  (
v  e.  { x }  /\  w  e.  {
y  |  ph }
) )  <->  E. w
( z  =  <. x ,  w >.  /\  w  e.  { y  |  ph } ) )
19 nfv 1626 . . . . . . . . . 10  |-  F/ y  z  =  <. x ,  w >.
20 nfsab1 2394 . . . . . . . . . 10  |-  F/ y  w  e.  { y  |  ph }
2119, 20nfan 1842 . . . . . . . . 9  |-  F/ y ( z  =  <. x ,  w >.  /\  w  e.  { y  |  ph } )
22 nfv 1626 . . . . . . . . 9  |-  F/ w
( z  =  <. x ,  y >.  /\  ph )
23 opeq2 3945 . . . . . . . . . . 11  |-  ( w  =  y  ->  <. x ,  w >.  =  <. x ,  y >. )
2423eqeq2d 2415 . . . . . . . . . 10  |-  ( w  =  y  ->  (
z  =  <. x ,  w >.  <->  z  =  <. x ,  y >. )
)
25 sbequ12 1940 . . . . . . . . . . . 12  |-  ( y  =  w  ->  ( ph 
<->  [ w  /  y ] ph ) )
2625equcoms 1689 . . . . . . . . . . 11  |-  ( w  =  y  ->  ( ph 
<->  [ w  /  y ] ph ) )
27 df-clab 2391 . . . . . . . . . . 11  |-  ( w  e.  { y  | 
ph }  <->  [ w  /  y ] ph )
2826, 27syl6rbbr 256 . . . . . . . . . 10  |-  ( w  =  y  ->  (
w  e.  { y  |  ph }  <->  ph ) )
2924, 28anbi12d 692 . . . . . . . . 9  |-  ( w  =  y  ->  (
( z  =  <. x ,  w >.  /\  w  e.  { y  |  ph } )  <->  ( z  =  <. x ,  y
>.  /\  ph ) ) )
3021, 22, 29cbvex 2038 . . . . . . . 8  |-  ( E. w ( z  = 
<. x ,  w >.  /\  w  e.  { y  |  ph } )  <->  E. y ( z  = 
<. x ,  y >.  /\  ph ) )
314, 18, 303bitri 263 . . . . . . 7  |-  ( z  e.  ( { x }  X.  { y  | 
ph } )  <->  E. y
( z  =  <. x ,  y >.  /\  ph ) )
3231anbi2i 676 . . . . . 6  |-  ( ( x  e.  A  /\  z  e.  ( {
x }  X.  {
y  |  ph }
) )  <->  ( x  e.  A  /\  E. y
( z  =  <. x ,  y >.  /\  ph ) ) )
331, 3, 323bitr4ri 270 . . . . 5  |-  ( ( x  e.  A  /\  z  e.  ( {
x }  X.  {
y  |  ph }
) )  <->  E. y
( z  =  <. x ,  y >.  /\  (
x  e.  A  /\  ph ) ) )
3433exbii 1589 . . . 4  |-  ( E. x ( x  e.  A  /\  z  e.  ( { x }  X.  { y  |  ph } ) )  <->  E. x E. y ( z  = 
<. x ,  y >.  /\  ( x  e.  A  /\  ph ) ) )
35 eliun 4057 . . . . 5  |-  ( z  e.  U_ x  e.  A  ( { x }  X.  { y  | 
ph } )  <->  E. x  e.  A  z  e.  ( { x }  X.  { y  |  ph } ) )
36 df-rex 2672 . . . . 5  |-  ( E. x  e.  A  z  e.  ( { x }  X.  { y  | 
ph } )  <->  E. x
( x  e.  A  /\  z  e.  ( { x }  X.  { y  |  ph } ) ) )
3735, 36bitri 241 . . . 4  |-  ( z  e.  U_ x  e.  A  ( { x }  X.  { y  | 
ph } )  <->  E. x
( x  e.  A  /\  z  e.  ( { x }  X.  { y  |  ph } ) ) )
38 elopab 4422 . . . 4  |-  ( z  e.  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  <->  E. x E. y ( z  = 
<. x ,  y >.  /\  ( x  e.  A  /\  ph ) ) )
3934, 37, 383bitr4i 269 . . 3  |-  ( z  e.  U_ x  e.  A  ( { x }  X.  { y  | 
ph } )  <->  z  e.  {
<. x ,  y >.  |  ( x  e.  A  /\  ph ) } )
4039eqriv 2401 . 2  |-  U_ x  e.  A  ( {
x }  X.  {
y  |  ph }
)  =  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }
41 opabex3.1 . . 3  |-  A  e. 
_V
42 snex 4365 . . . . 5  |-  { x }  e.  _V
43 opabex3.2 . . . . 5  |-  ( x  e.  A  ->  { y  |  ph }  e.  _V )
44 xpexg 4948 . . . . 5  |-  ( ( { x }  e.  _V  /\  { y  | 
ph }  e.  _V )  ->  ( { x }  X.  { y  | 
ph } )  e. 
_V )
4542, 43, 44sylancr 645 . . . 4  |-  ( x  e.  A  ->  ( { x }  X.  { y  |  ph } )  e.  _V )
4645rgen 2731 . . 3  |-  A. x  e.  A  ( {
x }  X.  {
y  |  ph }
)  e.  _V
47 iunexg 5946 . . 3  |-  ( ( A  e.  _V  /\  A. x  e.  A  ( { x }  X.  { y  |  ph } )  e.  _V )  ->  U_ x  e.  A  ( { x }  X.  { y  |  ph } )  e.  _V )
4841, 46, 47mp2an 654 . 2  |-  U_ x  e.  A  ( {
x }  X.  {
y  |  ph }
)  e.  _V
4940, 48eqeltrri 2475 1  |-  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  e.  _V
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   E.wex 1547    = wceq 1649   [wsb 1655    e. wcel 1721   {cab 2390   A.wral 2666   E.wrex 2667   _Vcvv 2916   {csn 3774   <.cop 3777   U_ciun 4053   {copab 4225    X. cxp 4835
This theorem is referenced by:  dvdsrval  15705
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421
  Copyright terms: Public domain W3C validator