MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onzsl Structured version   Unicode version

Theorem onzsl 6543
Description: An ordinal number is zero, a successor ordinal, or a limit ordinal number. (Contributed by NM, 1-Oct-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
onzsl  |-  ( A  e.  On  <->  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  ( A  e.  _V  /\  Lim  A
) ) )
Distinct variable group:    x, A

Proof of Theorem onzsl
StepHypRef Expression
1 elex 3063 . . 3  |-  ( A  e.  On  ->  A  e.  _V )
2 eloni 4813 . . 3  |-  ( A  e.  On  ->  Ord  A )
3 ordzsl 6542 . . . 4  |-  ( Ord 
A  <->  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  Lim  A ) )
4 3mix1 1157 . . . . . 6  |-  ( A  =  (/)  ->  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  ( A  e.  _V  /\  Lim  A
) ) )
54adantl 466 . . . . 5  |-  ( ( A  e.  _V  /\  A  =  (/) )  -> 
( A  =  (/)  \/ 
E. x  e.  On  A  =  suc  x  \/  ( A  e.  _V  /\ 
Lim  A ) ) )
6 3mix2 1158 . . . . . 6  |-  ( E. x  e.  On  A  =  suc  x  ->  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  ( A  e.  _V  /\  Lim  A ) ) )
76adantl 466 . . . . 5  |-  ( ( A  e.  _V  /\  E. x  e.  On  A  =  suc  x )  -> 
( A  =  (/)  \/ 
E. x  e.  On  A  =  suc  x  \/  ( A  e.  _V  /\ 
Lim  A ) ) )
8 3mix3 1159 . . . . 5  |-  ( ( A  e.  _V  /\  Lim  A )  ->  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  ( A  e.  _V  /\  Lim  A ) ) )
95, 7, 83jaodan 1285 . . . 4  |-  ( ( A  e.  _V  /\  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  Lim  A ) )  ->  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  ( A  e.  _V  /\  Lim  A ) ) )
103, 9sylan2b 475 . . 3  |-  ( ( A  e.  _V  /\  Ord  A )  ->  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  ( A  e.  _V  /\  Lim  A ) ) )
111, 2, 10syl2anc 661 . 2  |-  ( A  e.  On  ->  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  ( A  e.  _V  /\  Lim  A ) ) )
12 0elon 4856 . . . 4  |-  (/)  e.  On
13 eleq1 2520 . . . 4  |-  ( A  =  (/)  ->  ( A  e.  On  <->  (/)  e.  On ) )
1412, 13mpbiri 233 . . 3  |-  ( A  =  (/)  ->  A  e.  On )
15 suceloni 6510 . . . . 5  |-  ( x  e.  On  ->  suc  x  e.  On )
16 eleq1 2520 . . . . 5  |-  ( A  =  suc  x  -> 
( A  e.  On  <->  suc  x  e.  On ) )
1715, 16syl5ibrcom 222 . . . 4  |-  ( x  e.  On  ->  ( A  =  suc  x  ->  A  e.  On )
)
1817rexlimiv 2917 . . 3  |-  ( E. x  e.  On  A  =  suc  x  ->  A  e.  On )
19 limelon 4866 . . 3  |-  ( ( A  e.  _V  /\  Lim  A )  ->  A  e.  On )
2014, 18, 193jaoi 1282 . 2  |-  ( ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  ( A  e.  _V  /\  Lim  A ) )  ->  A  e.  On )
2111, 20impbii 188 1  |-  ( A  e.  On  <->  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  ( A  e.  _V  /\  Lim  A
) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    \/ w3o 964    = wceq 1370    e. wcel 1757   E.wrex 2793   _Vcvv 3054   (/)c0 3721   Ord word 4802   Oncon0 4803   Lim wlim 4804   suc csuc 4805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1709  ax-7 1729  ax-8 1759  ax-9 1761  ax-10 1776  ax-11 1781  ax-12 1793  ax-13 1944  ax-ext 2429  ax-sep 4497  ax-nul 4505  ax-pr 4615  ax-un 6458
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1702  df-eu 2263  df-mo 2264  df-clab 2436  df-cleq 2442  df-clel 2445  df-nfc 2598  df-ne 2643  df-ral 2797  df-rex 2798  df-rab 2801  df-v 3056  df-sbc 3271  df-dif 3415  df-un 3417  df-in 3419  df-ss 3426  df-pss 3428  df-nul 3722  df-if 3876  df-pw 3946  df-sn 3962  df-pr 3964  df-tp 3966  df-op 3968  df-uni 4176  df-br 4377  df-opab 4435  df-tr 4470  df-eprel 4716  df-po 4725  df-so 4726  df-fr 4763  df-we 4765  df-ord 4806  df-on 4807  df-lim 4808  df-suc 4809
This theorem is referenced by:  oawordeulem  7079  r1pwss  8078  r1val1  8080  pwcfsdom  8834  winalim2  8950  rankcf  9031  dfrdg4  28101
  Copyright terms: Public domain W3C validator