MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onzsl Structured version   Unicode version

Theorem onzsl 6666
Description: An ordinal number is zero, a successor ordinal, or a limit ordinal number. (Contributed by NM, 1-Oct-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
onzsl  |-  ( A  e.  On  <->  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  ( A  e.  _V  /\  Lim  A
) ) )
Distinct variable group:    x, A

Proof of Theorem onzsl
StepHypRef Expression
1 elex 3070 . . 3  |-  ( A  e.  On  ->  A  e.  _V )
2 eloni 5422 . . 3  |-  ( A  e.  On  ->  Ord  A )
3 ordzsl 6665 . . . 4  |-  ( Ord 
A  <->  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  Lim  A ) )
4 3mix1 1168 . . . . . 6  |-  ( A  =  (/)  ->  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  ( A  e.  _V  /\  Lim  A
) ) )
54adantl 466 . . . . 5  |-  ( ( A  e.  _V  /\  A  =  (/) )  -> 
( A  =  (/)  \/ 
E. x  e.  On  A  =  suc  x  \/  ( A  e.  _V  /\ 
Lim  A ) ) )
6 3mix2 1169 . . . . . 6  |-  ( E. x  e.  On  A  =  suc  x  ->  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  ( A  e.  _V  /\  Lim  A ) ) )
76adantl 466 . . . . 5  |-  ( ( A  e.  _V  /\  E. x  e.  On  A  =  suc  x )  -> 
( A  =  (/)  \/ 
E. x  e.  On  A  =  suc  x  \/  ( A  e.  _V  /\ 
Lim  A ) ) )
8 3mix3 1170 . . . . 5  |-  ( ( A  e.  _V  /\  Lim  A )  ->  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  ( A  e.  _V  /\  Lim  A ) ) )
95, 7, 83jaodan 1298 . . . 4  |-  ( ( A  e.  _V  /\  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  Lim  A ) )  ->  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  ( A  e.  _V  /\  Lim  A ) ) )
103, 9sylan2b 475 . . 3  |-  ( ( A  e.  _V  /\  Ord  A )  ->  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  ( A  e.  _V  /\  Lim  A ) ) )
111, 2, 10syl2anc 661 . 2  |-  ( A  e.  On  ->  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  ( A  e.  _V  /\  Lim  A ) ) )
12 0elon 5465 . . . 4  |-  (/)  e.  On
13 eleq1 2476 . . . 4  |-  ( A  =  (/)  ->  ( A  e.  On  <->  (/)  e.  On ) )
1412, 13mpbiri 235 . . 3  |-  ( A  =  (/)  ->  A  e.  On )
15 suceloni 6633 . . . . 5  |-  ( x  e.  On  ->  suc  x  e.  On )
16 eleq1 2476 . . . . 5  |-  ( A  =  suc  x  -> 
( A  e.  On  <->  suc  x  e.  On ) )
1715, 16syl5ibrcom 224 . . . 4  |-  ( x  e.  On  ->  ( A  =  suc  x  ->  A  e.  On )
)
1817rexlimiv 2892 . . 3  |-  ( E. x  e.  On  A  =  suc  x  ->  A  e.  On )
19 limelon 5475 . . 3  |-  ( ( A  e.  _V  /\  Lim  A )  ->  A  e.  On )
2014, 18, 193jaoi 1295 . 2  |-  ( ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  ( A  e.  _V  /\  Lim  A ) )  ->  A  e.  On )
2111, 20impbii 189 1  |-  ( A  e.  On  <->  ( A  =  (/)  \/  E. x  e.  On  A  =  suc  x  \/  ( A  e.  _V  /\  Lim  A
) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 186    /\ wa 369    \/ w3o 975    = wceq 1407    e. wcel 1844   E.wrex 2757   _Vcvv 3061   (/)c0 3740   Ord word 5411   Oncon0 5412   Lim wlim 5413   suc csuc 5414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-8 1846  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-sep 4519  ax-nul 4527  ax-pr 4632  ax-un 6576
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3or 977  df-3an 978  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3063  df-sbc 3280  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3741  df-if 3888  df-pw 3959  df-sn 3975  df-pr 3977  df-tp 3979  df-op 3981  df-uni 4194  df-br 4398  df-opab 4456  df-tr 4492  df-eprel 4736  df-po 4746  df-so 4747  df-fr 4784  df-we 4786  df-ord 5415  df-on 5416  df-lim 5417  df-suc 5418
This theorem is referenced by:  oawordeulem  7242  r1pwss  8236  r1val1  8238  pwcfsdom  8992  winalim2  9106  rankcf  9187  dfrdg4  30302
  Copyright terms: Public domain W3C validator