Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ontrci Structured version   Unicode version

Theorem ontrci 4935
 Description: An ordinal number is a transitive class. (Contributed by NM, 11-Jun-1994.)
Hypothesis
Ref Expression
on.1
Assertion
Ref Expression
ontrci

Proof of Theorem ontrci
StepHypRef Expression
1 on.1 . . 3
21onordi 4934 . 2
3 ordtr 4844 . 2
42, 3ax-mp 5 1
 Colors of variables: wff setvar class Syntax hints:   wcel 1758   wtr 4496   word 4829  con0 4830 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ral 2804  df-rex 2805  df-v 3080  df-in 3446  df-ss 3453  df-uni 4203  df-tr 4497  df-po 4752  df-so 4753  df-fr 4790  df-we 4792  df-ord 4833  df-on 4834 This theorem is referenced by:  onunisuci  4943  hfuni  28386
 Copyright terms: Public domain W3C validator