MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ontrci Structured version   Unicode version

Theorem ontrci 4983
Description: An ordinal number is a transitive class. (Contributed by NM, 11-Jun-1994.)
Hypothesis
Ref Expression
on.1  |-  A  e.  On
Assertion
Ref Expression
ontrci  |-  Tr  A

Proof of Theorem ontrci
StepHypRef Expression
1 on.1 . . 3  |-  A  e.  On
21onordi 4982 . 2  |-  Ord  A
3 ordtr 4892 . 2  |-  ( Ord 
A  ->  Tr  A
)
42, 3ax-mp 5 1  |-  Tr  A
Colors of variables: wff setvar class
Syntax hints:    e. wcel 1767   Tr wtr 4540   Ord word 4877   Oncon0 4878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ral 2819  df-rex 2820  df-v 3115  df-in 3483  df-ss 3490  df-uni 4246  df-tr 4541  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882
This theorem is referenced by:  onunisuci  4991  hfuni  29415
  Copyright terms: Public domain W3C validator