MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ontr2 Structured version   Unicode version

Theorem ontr2 4934
Description: Transitive law for ordinal numbers. Exercise 3 of [TakeutiZaring] p. 40. (Contributed by NM, 6-Nov-2003.)
Assertion
Ref Expression
ontr2  |-  ( ( A  e.  On  /\  C  e.  On )  ->  ( ( A  C_  B  /\  B  e.  C
)  ->  A  e.  C ) )

Proof of Theorem ontr2
StepHypRef Expression
1 eloni 4897 . 2  |-  ( A  e.  On  ->  Ord  A )
2 eloni 4897 . 2  |-  ( C  e.  On  ->  Ord  C )
3 ordtr2 4931 . 2  |-  ( ( Ord  A  /\  Ord  C )  ->  ( ( A  C_  B  /\  B  e.  C )  ->  A  e.  C ) )
41, 2, 3syl2an 477 1  |-  ( ( A  e.  On  /\  C  e.  On )  ->  ( ( A  C_  B  /\  B  e.  C
)  ->  A  e.  C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    e. wcel 1819    C_ wss 3471   Ord word 4886   Oncon0 4887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pr 4695
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-br 4457  df-opab 4516  df-tr 4551  df-eprel 4800  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891
This theorem is referenced by:  oeordsuc  7261  oelimcl  7267  oeeui  7269  omopthlem2  7323  omxpenlem  7637  oismo  7983  cantnflem1c  8123  cantnflem1  8125  cantnflem3  8127  cantnflem1cOLD  8146  cantnflem1OLD  8148  cantnflem3OLD  8149  rankr1ai  8233  rankxplim  8314  infxpenlem  8408  alephle  8486  pwcfsdom  8975  r1limwun  9131  nobndlem6  29631  ontopbas  30055  ontgval  30058
  Copyright terms: Public domain W3C validator