Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ontopbas Structured version   Unicode version

Theorem ontopbas 30055
Description: An ordinal number is a topological basis. (Contributed by Chen-Pang He, 8-Oct-2015.)
Assertion
Ref Expression
ontopbas  |-  ( B  e.  On  ->  B  e. 
TopBases )

Proof of Theorem ontopbas
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onelon 4912 . . . . . . . 8  |-  ( ( B  e.  On  /\  x  e.  B )  ->  x  e.  On )
2 onelon 4912 . . . . . . . 8  |-  ( ( B  e.  On  /\  y  e.  B )  ->  y  e.  On )
31, 2anim12dan 837 . . . . . . 7  |-  ( ( B  e.  On  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x  e.  On  /\  y  e.  On )
)
43ex 434 . . . . . 6  |-  ( B  e.  On  ->  (
( x  e.  B  /\  y  e.  B
)  ->  ( x  e.  On  /\  y  e.  On ) ) )
5 onin 4918 . . . . . 6  |-  ( ( x  e.  On  /\  y  e.  On )  ->  ( x  i^i  y
)  e.  On )
64, 5syl6 33 . . . . 5  |-  ( B  e.  On  ->  (
( x  e.  B  /\  y  e.  B
)  ->  ( x  i^i  y )  e.  On ) )
76anc2ri 558 . . . 4  |-  ( B  e.  On  ->  (
( x  e.  B  /\  y  e.  B
)  ->  ( (
x  i^i  y )  e.  On  /\  B  e.  On ) ) )
8 inss1 3714 . . . . . . 7  |-  ( x  i^i  y )  C_  x
98jctl 541 . . . . . 6  |-  ( x  e.  B  ->  (
( x  i^i  y
)  C_  x  /\  x  e.  B )
)
109adantr 465 . . . . 5  |-  ( ( x  e.  B  /\  y  e.  B )  ->  ( ( x  i^i  y )  C_  x  /\  x  e.  B
) )
1110a1i 11 . . . 4  |-  ( B  e.  On  ->  (
( x  e.  B  /\  y  e.  B
)  ->  ( (
x  i^i  y )  C_  x  /\  x  e.  B ) ) )
12 ontr2 4934 . . . 4  |-  ( ( ( x  i^i  y
)  e.  On  /\  B  e.  On )  ->  ( ( ( x  i^i  y )  C_  x  /\  x  e.  B
)  ->  ( x  i^i  y )  e.  B
) )
137, 11, 12syl6c 64 . . 3  |-  ( B  e.  On  ->  (
( x  e.  B  /\  y  e.  B
)  ->  ( x  i^i  y )  e.  B
) )
1413ralrimivv 2877 . 2  |-  ( B  e.  On  ->  A. x  e.  B  A. y  e.  B  ( x  i^i  y )  e.  B
)
15 fiinbas 19579 . 2  |-  ( ( B  e.  On  /\  A. x  e.  B  A. y  e.  B  (
x  i^i  y )  e.  B )  ->  B  e. 
TopBases )
1614, 15mpdan 668 1  |-  ( B  e.  On  ->  B  e. 
TopBases )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    e. wcel 1819   A.wral 2807    i^i cin 3470    C_ wss 3471   Oncon0 4887   TopBasesctb 19524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pr 4695
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-br 4457  df-opab 4516  df-tr 4551  df-eprel 4800  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-bases 19527
This theorem is referenced by:  onsstopbas  30056  onsuctop  30060
  Copyright terms: Public domain W3C validator