Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsuct0 Structured version   Unicode version

Theorem onsuct0 29483
Description: A successor ordinal number is a T0 space. (Contributed by Chen-Pang He, 8-Nov-2015.)
Assertion
Ref Expression
onsuct0  |-  ( A  e.  On  ->  suc  A  e.  Kol2 )

Proof of Theorem onsuct0
Dummy variables  o  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eloni 4888 . . 3  |-  ( A  e.  On  ->  Ord  A )
2 df-ral 2819 . . . . . 6  |-  ( A. o  e.  suc  A ( x  e.  o  <->  y  e.  o )  <->  A. o
( o  e.  suc  A  ->  ( x  e.  o  <->  y  e.  o ) ) )
3 ordelon 4902 . . . . . . . . . . 11  |-  ( ( Ord  A  /\  x  e.  A )  ->  x  e.  On )
4 ordelon 4902 . . . . . . . . . . 11  |-  ( ( Ord  A  /\  y  e.  A )  ->  y  e.  On )
53, 4anim12dan 835 . . . . . . . . . 10  |-  ( ( Ord  A  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( x  e.  On  /\  y  e.  On ) )
6 ordsuc 6627 . . . . . . . . . . . 12  |-  ( Ord 
A  <->  Ord  suc  A )
7 ordelon 4902 . . . . . . . . . . . . 13  |-  ( ( Ord  suc  A  /\  o  e.  suc  A )  ->  o  e.  On )
87ex 434 . . . . . . . . . . . 12  |-  ( Ord 
suc  A  ->  ( o  e.  suc  A  -> 
o  e.  On ) )
96, 8sylbi 195 . . . . . . . . . . 11  |-  ( Ord 
A  ->  ( o  e.  suc  A  ->  o  e.  On ) )
109adantr 465 . . . . . . . . . 10  |-  ( ( Ord  A  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( o  e.  suc  A  ->  o  e.  On ) )
11 notbi 295 . . . . . . . . . . . 12  |-  ( ( x  e.  o  <->  y  e.  o )  <->  ( -.  x  e.  o  <->  -.  y  e.  o ) )
12 ontri1 4912 . . . . . . . . . . . . . . . 16  |-  ( ( o  e.  On  /\  x  e.  On )  ->  ( o  C_  x  <->  -.  x  e.  o ) )
13 onsssuc 4965 . . . . . . . . . . . . . . . 16  |-  ( ( o  e.  On  /\  x  e.  On )  ->  ( o  C_  x  <->  o  e.  suc  x ) )
1412, 13bitr3d 255 . . . . . . . . . . . . . . 15  |-  ( ( o  e.  On  /\  x  e.  On )  ->  ( -.  x  e.  o  <->  o  e.  suc  x ) )
1514adantrr 716 . . . . . . . . . . . . . 14  |-  ( ( o  e.  On  /\  ( x  e.  On  /\  y  e.  On ) )  ->  ( -.  x  e.  o  <->  o  e.  suc  x ) )
16 ontri1 4912 . . . . . . . . . . . . . . . 16  |-  ( ( o  e.  On  /\  y  e.  On )  ->  ( o  C_  y  <->  -.  y  e.  o ) )
17 onsssuc 4965 . . . . . . . . . . . . . . . 16  |-  ( ( o  e.  On  /\  y  e.  On )  ->  ( o  C_  y  <->  o  e.  suc  y ) )
1816, 17bitr3d 255 . . . . . . . . . . . . . . 15  |-  ( ( o  e.  On  /\  y  e.  On )  ->  ( -.  y  e.  o  <->  o  e.  suc  y ) )
1918adantrl 715 . . . . . . . . . . . . . 14  |-  ( ( o  e.  On  /\  ( x  e.  On  /\  y  e.  On ) )  ->  ( -.  y  e.  o  <->  o  e.  suc  y ) )
2015, 19bibi12d 321 . . . . . . . . . . . . 13  |-  ( ( o  e.  On  /\  ( x  e.  On  /\  y  e.  On ) )  ->  ( ( -.  x  e.  o  <->  -.  y  e.  o )  <-> 
( o  e.  suc  x 
<->  o  e.  suc  y
) ) )
2120ancoms 453 . . . . . . . . . . . 12  |-  ( ( ( x  e.  On  /\  y  e.  On )  /\  o  e.  On )  ->  ( ( -.  x  e.  o  <->  -.  y  e.  o )  <->  ( o  e.  suc  x  <->  o  e.  suc  y ) ) )
2211, 21syl5bb 257 . . . . . . . . . . 11  |-  ( ( ( x  e.  On  /\  y  e.  On )  /\  o  e.  On )  ->  ( ( x  e.  o  <->  y  e.  o )  <->  ( o  e.  suc  x  <->  o  e.  suc  y ) ) )
2322biimpd 207 . . . . . . . . . 10  |-  ( ( ( x  e.  On  /\  y  e.  On )  /\  o  e.  On )  ->  ( ( x  e.  o  <->  y  e.  o )  ->  (
o  e.  suc  x  <->  o  e.  suc  y ) ) )
245, 10, 23syl6an 545 . . . . . . . . 9  |-  ( ( Ord  A  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( o  e.  suc  A  ->  (
( x  e.  o  <-> 
y  e.  o )  ->  ( o  e. 
suc  x  <->  o  e.  suc  y ) ) ) )
2524a2d 26 . . . . . . . 8  |-  ( ( Ord  A  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( (
o  e.  suc  A  ->  ( x  e.  o  <-> 
y  e.  o ) )  ->  ( o  e.  suc  A  ->  (
o  e.  suc  x  <->  o  e.  suc  y ) ) ) )
26 ordelss 4894 . . . . . . . . . . . . . 14  |-  ( ( Ord  A  /\  x  e.  A )  ->  x  C_  A )
27 ordelord 4900 . . . . . . . . . . . . . . 15  |-  ( ( Ord  A  /\  x  e.  A )  ->  Ord  x )
28 ordsucsssuc 6636 . . . . . . . . . . . . . . . 16  |-  ( ( Ord  x  /\  Ord  A )  ->  ( x  C_  A  <->  suc  x  C_  suc  A ) )
2928ancoms 453 . . . . . . . . . . . . . . 15  |-  ( ( Ord  A  /\  Ord  x )  ->  (
x  C_  A  <->  suc  x  C_  suc  A ) )
3027, 29syldan 470 . . . . . . . . . . . . . 14  |-  ( ( Ord  A  /\  x  e.  A )  ->  (
x  C_  A  <->  suc  x  C_  suc  A ) )
3126, 30mpbid 210 . . . . . . . . . . . . 13  |-  ( ( Ord  A  /\  x  e.  A )  ->  suc  x  C_  suc  A )
3231ssneld 3506 . . . . . . . . . . . 12  |-  ( ( Ord  A  /\  x  e.  A )  ->  ( -.  o  e.  suc  A  ->  -.  o  e.  suc  x ) )
3332adantrr 716 . . . . . . . . . . 11  |-  ( ( Ord  A  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( -.  o  e.  suc  A  ->  -.  o  e.  suc  x ) )
34 ordelss 4894 . . . . . . . . . . . . . 14  |-  ( ( Ord  A  /\  y  e.  A )  ->  y  C_  A )
35 ordelord 4900 . . . . . . . . . . . . . . 15  |-  ( ( Ord  A  /\  y  e.  A )  ->  Ord  y )
36 ordsucsssuc 6636 . . . . . . . . . . . . . . . 16  |-  ( ( Ord  y  /\  Ord  A )  ->  ( y  C_  A  <->  suc  y  C_  suc  A ) )
3736ancoms 453 . . . . . . . . . . . . . . 15  |-  ( ( Ord  A  /\  Ord  y )  ->  (
y  C_  A  <->  suc  y  C_  suc  A ) )
3835, 37syldan 470 . . . . . . . . . . . . . 14  |-  ( ( Ord  A  /\  y  e.  A )  ->  (
y  C_  A  <->  suc  y  C_  suc  A ) )
3934, 38mpbid 210 . . . . . . . . . . . . 13  |-  ( ( Ord  A  /\  y  e.  A )  ->  suc  y  C_  suc  A )
4039ssneld 3506 . . . . . . . . . . . 12  |-  ( ( Ord  A  /\  y  e.  A )  ->  ( -.  o  e.  suc  A  ->  -.  o  e.  suc  y ) )
4140adantrl 715 . . . . . . . . . . 11  |-  ( ( Ord  A  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( -.  o  e.  suc  A  ->  -.  o  e.  suc  y ) )
4233, 41jcad 533 . . . . . . . . . 10  |-  ( ( Ord  A  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( -.  o  e.  suc  A  -> 
( -.  o  e. 
suc  x  /\  -.  o  e.  suc  y ) ) )
43 pm5.21 856 . . . . . . . . . 10  |-  ( ( -.  o  e.  suc  x  /\  -.  o  e. 
suc  y )  -> 
( o  e.  suc  x 
<->  o  e.  suc  y
) )
4442, 43syl6 33 . . . . . . . . 9  |-  ( ( Ord  A  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( -.  o  e.  suc  A  -> 
( o  e.  suc  x 
<->  o  e.  suc  y
) ) )
45 idd 24 . . . . . . . . 9  |-  ( ( Ord  A  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( (
o  e.  suc  x  <->  o  e.  suc  y )  ->  ( o  e. 
suc  x  <->  o  e.  suc  y ) ) )
4644, 45jad 162 . . . . . . . 8  |-  ( ( Ord  A  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( (
o  e.  suc  A  ->  ( o  e.  suc  x 
<->  o  e.  suc  y
) )  ->  (
o  e.  suc  x  <->  o  e.  suc  y ) ) )
4725, 46syld 44 . . . . . . 7  |-  ( ( Ord  A  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( (
o  e.  suc  A  ->  ( x  e.  o  <-> 
y  e.  o ) )  ->  ( o  e.  suc  x  <->  o  e.  suc  y ) ) )
4847alimdv 1685 . . . . . 6  |-  ( ( Ord  A  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( A. o ( o  e. 
suc  A  ->  ( x  e.  o  <->  y  e.  o ) )  ->  A. o ( o  e. 
suc  x  <->  o  e.  suc  y ) ) )
492, 48syl5bi 217 . . . . 5  |-  ( ( Ord  A  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( A. o  e.  suc  A ( x  e.  o  <->  y  e.  o )  ->  A. o
( o  e.  suc  x 
<->  o  e.  suc  y
) ) )
50 dfcleq 2460 . . . . . . 7  |-  ( suc  x  =  suc  y  <->  A. o ( o  e. 
suc  x  <->  o  e.  suc  y ) )
51 suc11 4981 . . . . . . 7  |-  ( ( x  e.  On  /\  y  e.  On )  ->  ( suc  x  =  suc  y  <->  x  =  y ) )
5250, 51syl5bbr 259 . . . . . 6  |-  ( ( x  e.  On  /\  y  e.  On )  ->  ( A. o ( o  e.  suc  x  <->  o  e.  suc  y )  <-> 
x  =  y ) )
535, 52syl 16 . . . . 5  |-  ( ( Ord  A  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( A. o ( o  e. 
suc  x  <->  o  e.  suc  y )  <->  x  =  y ) )
5449, 53sylibd 214 . . . 4  |-  ( ( Ord  A  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( A. o  e.  suc  A ( x  e.  o  <->  y  e.  o )  ->  x  =  y ) )
5554ralrimivva 2885 . . 3  |-  ( Ord 
A  ->  A. x  e.  A  A. y  e.  A  ( A. o  e.  suc  A ( x  e.  o  <->  y  e.  o )  ->  x  =  y ) )
561, 55syl 16 . 2  |-  ( A  e.  On  ->  A. x  e.  A  A. y  e.  A  ( A. o  e.  suc  A ( x  e.  o  <->  y  e.  o )  ->  x  =  y ) )
57 onsuctopon 29476 . . 3  |-  ( A  e.  On  ->  suc  A  e.  (TopOn `  A
) )
58 ist0-2 19611 . . 3  |-  ( suc 
A  e.  (TopOn `  A )  ->  ( suc  A  e.  Kol2  <->  A. x  e.  A  A. y  e.  A  ( A. o  e.  suc  A ( x  e.  o  <->  y  e.  o )  ->  x  =  y ) ) )
5957, 58syl 16 . 2  |-  ( A  e.  On  ->  ( suc  A  e.  Kol2  <->  A. x  e.  A  A. y  e.  A  ( A. o  e.  suc  A ( x  e.  o  <->  y  e.  o )  ->  x  =  y ) ) )
6056, 59mpbird 232 1  |-  ( A  e.  On  ->  suc  A  e.  Kol2 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1377    = wceq 1379    e. wcel 1767   A.wral 2814    C_ wss 3476   Ord word 4877   Oncon0 4878   suc csuc 4880   ` cfv 5586  TopOnctopon 19162   Kol2ct0 19573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-iota 5549  df-fun 5588  df-fv 5594  df-topgen 14695  df-top 19166  df-bases 19168  df-topon 19169  df-t0 19580
This theorem is referenced by:  ordtopt0  29484
  Copyright terms: Public domain W3C validator