Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsuccon Structured version   Unicode version

Theorem onsuccon 30108
Description: A successor ordinal number is a connected topology. (Contributed by Chen-Pang He, 16-Oct-2015.)
Assertion
Ref Expression
onsuccon  |-  ( A  e.  On  ->  suc  A  e.  Con )

Proof of Theorem onsuccon
StepHypRef Expression
1 suceq 4952 . . 3  |-  ( A  =  if ( A  e.  On ,  A ,  (/) )  ->  suc  A  =  suc  if ( A  e.  On ,  A ,  (/) ) )
21eleq1d 2526 . 2  |-  ( A  =  if ( A  e.  On ,  A ,  (/) )  ->  ( suc  A  e.  Con  <->  suc  if ( A  e.  On ,  A ,  (/) )  e. 
Con ) )
3 0elon 4940 . . . 4  |-  (/)  e.  On
43elimel 4007 . . 3  |-  if ( A  e.  On ,  A ,  (/) )  e.  On
54onsucconi 30107 . 2  |-  suc  if ( A  e.  On ,  A ,  (/) )  e. 
Con
62, 5dedth 3996 1  |-  ( A  e.  On  ->  suc  A  e.  Con )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 1819   (/)c0 3793   ifcif 3944   Oncon0 4887   suc csuc 4889   Conccon 20038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-fv 5602  df-topgen 14861  df-top 19526  df-bases 19528  df-cld 19647  df-con 20039
This theorem is referenced by:  ordtopcon  30109
  Copyright terms: Public domain W3C validator