MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onnbtwn Structured version   Unicode version

Theorem onnbtwn 4809
Description: There is no set between an ordinal number and its successor. Proposition 7.25 of [TakeutiZaring] p. 41. (Contributed by NM, 9-Jun-1994.)
Assertion
Ref Expression
onnbtwn  |-  ( A  e.  On  ->  -.  ( A  e.  B  /\  B  e.  suc  A ) )

Proof of Theorem onnbtwn
StepHypRef Expression
1 eloni 4728 . 2  |-  ( A  e.  On  ->  Ord  A )
2 ordnbtwn 4808 . 2  |-  ( Ord 
A  ->  -.  ( A  e.  B  /\  B  e.  suc  A ) )
31, 2syl 16 1  |-  ( A  e.  On  ->  -.  ( A  e.  B  /\  B  e.  suc  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    e. wcel 1756   Ord word 4717   Oncon0 4718   suc csuc 4720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4412  ax-nul 4420  ax-pr 4530
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2719  df-rex 2720  df-rab 2723  df-v 2973  df-sbc 3186  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-nul 3637  df-if 3791  df-sn 3877  df-pr 3879  df-op 3883  df-uni 4091  df-br 4292  df-opab 4350  df-tr 4385  df-eprel 4631  df-po 4640  df-so 4641  df-fr 4678  df-we 4680  df-ord 4721  df-on 4722  df-suc 4724
This theorem is referenced by:  ordunisuc2  6454  oalimcl  6998  omlimcl  7016  oneo  7019  nnneo  7089
  Copyright terms: Public domain W3C validator