MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onminsb Structured version   Unicode version

Theorem onminsb 6605
Description: If a property is true for some ordinal number, it is true for a minimal ordinal number. This version uses implicit substitution. Theorem Schema 62 of [Suppes] p. 228. (Contributed by NM, 3-Oct-2003.)
Hypotheses
Ref Expression
onminsb.1  |-  F/ x ps
onminsb.2  |-  ( x  =  |^| { x  e.  On  |  ph }  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
onminsb  |-  ( E. x  e.  On  ph  ->  ps )

Proof of Theorem onminsb
StepHypRef Expression
1 rabn0 3798 . . 3  |-  ( { x  e.  On  |  ph }  =/=  (/)  <->  E. x  e.  On  ph )
2 ssrab2 3578 . . . 4  |-  { x  e.  On  |  ph }  C_  On
3 onint 6601 . . . 4  |-  ( ( { x  e.  On  |  ph }  C_  On  /\ 
{ x  e.  On  |  ph }  =/=  (/) )  ->  |^| { x  e.  On  |  ph }  e.  {
x  e.  On  |  ph } )
42, 3mpan 670 . . 3  |-  ( { x  e.  On  |  ph }  =/=  (/)  ->  |^| { x  e.  On  |  ph }  e.  { x  e.  On  |  ph } )
51, 4sylbir 213 . 2  |-  ( E. x  e.  On  ph  ->  |^| { x  e.  On  |  ph }  e.  { x  e.  On  |  ph } )
6 nfrab1 3035 . . . . 5  |-  F/_ x { x  e.  On  |  ph }
76nfint 4285 . . . 4  |-  F/_ x |^| { x  e.  On  |  ph }
8 nfcv 2622 . . . 4  |-  F/_ x On
9 onminsb.1 . . . 4  |-  F/ x ps
10 onminsb.2 . . . 4  |-  ( x  =  |^| { x  e.  On  |  ph }  ->  ( ph  <->  ps )
)
117, 8, 9, 10elrabf 3252 . . 3  |-  ( |^| { x  e.  On  |  ph }  e.  { x  e.  On  |  ph }  <->  (
|^| { x  e.  On  |  ph }  e.  On  /\ 
ps ) )
1211simprbi 464 . 2  |-  ( |^| { x  e.  On  |  ph }  e.  { x  e.  On  |  ph }  ->  ps )
135, 12syl 16 1  |-  ( E. x  e.  On  ph  ->  ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    = wceq 1374   F/wnf 1594    e. wcel 1762    =/= wne 2655   E.wrex 2808   {crab 2811    C_ wss 3469   (/)c0 3778   |^|cint 4275   Oncon0 4871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pr 4679  ax-un 6567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3108  df-sbc 3325  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-br 4441  df-opab 4499  df-tr 4534  df-eprel 4784  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875
This theorem is referenced by:  oawordeulem  7193  rankidb  8207  cardmin2  8368  cardaleph  8459  cardmin  8928
  Copyright terms: Public domain W3C validator