![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > onintrab2 | Structured version Unicode version |
Description: An existence condition equivalent to an intersection's being an ordinal number. (Contributed by NM, 6-Nov-2003.) |
Ref | Expression |
---|---|
onintrab2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intexrab 4554 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | onintrab 6517 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | bitri 249 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1592 ax-4 1603 ax-5 1671 ax-6 1710 ax-7 1730 ax-8 1760 ax-9 1762 ax-10 1777 ax-11 1782 ax-12 1794 ax-13 1954 ax-ext 2431 ax-sep 4516 ax-nul 4524 ax-pr 4634 ax-un 6477 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 966 df-3an 967 df-tru 1373 df-ex 1588 df-nf 1591 df-sb 1703 df-eu 2265 df-mo 2266 df-clab 2438 df-cleq 2444 df-clel 2447 df-nfc 2602 df-ne 2647 df-ral 2801 df-rex 2802 df-rab 2805 df-v 3074 df-sbc 3289 df-dif 3434 df-un 3436 df-in 3438 df-ss 3445 df-pss 3447 df-nul 3741 df-if 3895 df-sn 3981 df-pr 3983 df-tp 3985 df-op 3987 df-uni 4195 df-int 4232 df-br 4396 df-opab 4454 df-tr 4489 df-eprel 4735 df-po 4744 df-so 4745 df-fr 4782 df-we 4784 df-ord 4825 df-on 4826 |
This theorem is referenced by: oeeulem 7145 cardmin2 8274 cardaleph 8365 cardmin 8834 nobndlem2 27973 nobndlem4 27975 nobndlem6 27977 nofulllem4 27985 |
Copyright terms: Public domain | W3C validator |