Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onint1 Structured version   Unicode version

Theorem onint1 31102
Description: The ordinal T1 spaces are 
1o and  2o, proven without the Axiom of Regularity. (Contributed by Chen-Pang He, 9-Nov-2015.)
Assertion
Ref Expression
onint1  |-  ( On 
i^i  Fre )  =  { 1o ,  2o }

Proof of Theorem onint1
Dummy variables  j 
a are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elin 3649 . . . . 5  |-  ( j  e.  ( On  i^i  Fre )  <->  ( j  e.  On  /\  j  e. 
Fre ) )
2 eqid 2422 . . . . . . . . . . 11  |-  U. j  =  U. j
32ist1 20324 . . . . . . . . . 10  |-  ( j  e.  Fre  <->  ( j  e.  Top  /\  A. a  e.  U. j { a }  e.  ( Clsd `  j ) ) )
43simprbi 465 . . . . . . . . 9  |-  ( j  e.  Fre  ->  A. a  e.  U. j { a }  e.  ( Clsd `  j ) )
5 onelon 5464 . . . . . . . . . . . . . . 15  |-  ( ( j  e.  On  /\  ( U. j  \  { (/)
} )  e.  j )  ->  ( U. j  \  { (/) } )  e.  On )
65ex 435 . . . . . . . . . . . . . 14  |-  ( j  e.  On  ->  (
( U. j  \  { (/) } )  e.  j  ->  ( U. j  \  { (/) } )  e.  On ) )
7 neldifsnd 4125 . . . . . . . . . . . . . . . . 17  |-  ( 2o  e.  j  ->  -.  (/) 
e.  ( U. j  \  { (/) } ) )
8 p0ex 4608 . . . . . . . . . . . . . . . . . . . . . 22  |-  { (/) }  e.  _V
98prid2 4106 . . . . . . . . . . . . . . . . . . . . 21  |-  { (/) }  e.  { (/) ,  { (/)
} }
10 df2o2 7201 . . . . . . . . . . . . . . . . . . . . 21  |-  2o  =  { (/) ,  { (/) } }
119, 10eleqtrri 2509 . . . . . . . . . . . . . . . . . . . 20  |-  { (/) }  e.  2o
12 elunii 4221 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( { (/) }  e.  2o  /\  2o  e.  j )  ->  { (/) }  e.  U. j )
1311, 12mpan 674 . . . . . . . . . . . . . . . . . . 19  |-  ( 2o  e.  j  ->  { (/) }  e.  U. j )
14 df1o2 7199 . . . . . . . . . . . . . . . . . . . . . 22  |-  1o  =  { (/) }
15 1on 7194 . . . . . . . . . . . . . . . . . . . . . 22  |-  1o  e.  On
1614, 15eqeltrri 2507 . . . . . . . . . . . . . . . . . . . . 21  |-  { (/) }  e.  On
1716onirri 5545 . . . . . . . . . . . . . . . . . . . 20  |-  -.  { (/)
}  e.  { (/) }
1817a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( 2o  e.  j  ->  -.  {
(/) }  e.  { (/) } )
1913, 18eldifd 3447 . . . . . . . . . . . . . . . . . 18  |-  ( 2o  e.  j  ->  { (/) }  e.  ( U. j  \  { (/) } ) )
20 ne0i 3767 . . . . . . . . . . . . . . . . . 18  |-  ( {
(/) }  e.  ( U. j  \  { (/) } )  ->  ( U. j  \  { (/) } )  =/=  (/) )
2119, 20syl 17 . . . . . . . . . . . . . . . . 17  |-  ( 2o  e.  j  ->  ( U. j  \  { (/) } )  =/=  (/) )
227, 212thd 243 . . . . . . . . . . . . . . . 16  |-  ( 2o  e.  j  ->  ( -.  (/)  e.  ( U. j  \  { (/) } )  <-> 
( U. j  \  { (/) } )  =/=  (/) ) )
23 nbbn 359 . . . . . . . . . . . . . . . 16  |-  ( ( -.  (/)  e.  ( U. j  \  { (/) } )  <-> 
( U. j  \  { (/) } )  =/=  (/) )  <->  -.  ( (/)  e.  ( U. j  \  { (/)
} )  <->  ( U. j  \  { (/) } )  =/=  (/) ) )
2422, 23sylib 199 . . . . . . . . . . . . . . 15  |-  ( 2o  e.  j  ->  -.  ( (/)  e.  ( U. j  \  { (/) } )  <-> 
( U. j  \  { (/) } )  =/=  (/) ) )
25 on0eln0 5494 . . . . . . . . . . . . . . 15  |-  ( ( U. j  \  { (/)
} )  e.  On  ->  ( (/)  e.  ( U. j  \  { (/) } )  <->  ( U. j  \  { (/) } )  =/=  (/) ) )
2624, 25nsyl 124 . . . . . . . . . . . . . 14  |-  ( 2o  e.  j  ->  -.  ( U. j  \  { (/)
} )  e.  On )
276, 26nsyli 146 . . . . . . . . . . . . 13  |-  ( j  e.  On  ->  ( 2o  e.  j  ->  -.  ( U. j  \  { (/)
} )  e.  j ) )
2827imp 430 . . . . . . . . . . . 12  |-  ( ( j  e.  On  /\  2o  e.  j )  ->  -.  ( U. j  \  { (/) } )  e.  j )
29 0ex 4553 . . . . . . . . . . . . . . . . . 18  |-  (/)  e.  _V
3029prid1 4105 . . . . . . . . . . . . . . . . 17  |-  (/)  e.  { (/)
,  { (/) } }
3130, 10eleqtrri 2509 . . . . . . . . . . . . . . . 16  |-  (/)  e.  2o
32 elunii 4221 . . . . . . . . . . . . . . . 16  |-  ( (
(/)  e.  2o  /\  2o  e.  j )  ->  (/)  e.  U. j )
3331, 32mpan 674 . . . . . . . . . . . . . . 15  |-  ( 2o  e.  j  ->  (/)  e.  U. j )
3433adantl 467 . . . . . . . . . . . . . 14  |-  ( ( j  e.  On  /\  2o  e.  j )  ->  (/) 
e.  U. j )
35 simpr 462 . . . . . . . . . . . . . . . 16  |-  ( ( ( j  e.  On  /\  2o  e.  j )  /\  a  =  (/) )  ->  a  =  (/) )
3635sneqd 4008 . . . . . . . . . . . . . . 15  |-  ( ( ( j  e.  On  /\  2o  e.  j )  /\  a  =  (/) )  ->  { a }  =  { (/) } )
3736eleq1d 2491 . . . . . . . . . . . . . 14  |-  ( ( ( j  e.  On  /\  2o  e.  j )  /\  a  =  (/) )  ->  ( { a }  e.  ( Clsd `  j )  <->  { (/) }  e.  ( Clsd `  j )
) )
3834, 37rspcdv 3185 . . . . . . . . . . . . 13  |-  ( ( j  e.  On  /\  2o  e.  j )  -> 
( A. a  e. 
U. j { a }  e.  ( Clsd `  j )  ->  { (/) }  e.  ( Clsd `  j
) ) )
392cldopn 20033 . . . . . . . . . . . . 13  |-  ( {
(/) }  e.  ( Clsd `  j )  -> 
( U. j  \  { (/) } )  e.  j )
4038, 39syl6 34 . . . . . . . . . . . 12  |-  ( ( j  e.  On  /\  2o  e.  j )  -> 
( A. a  e. 
U. j { a }  e.  ( Clsd `  j )  ->  ( U. j  \  { (/) } )  e.  j ) )
4128, 40mtod 180 . . . . . . . . . . 11  |-  ( ( j  e.  On  /\  2o  e.  j )  ->  -.  A. a  e.  U. j { a }  e.  ( Clsd `  j )
)
4241ex 435 . . . . . . . . . 10  |-  ( j  e.  On  ->  ( 2o  e.  j  ->  -.  A. a  e.  U. j { a }  e.  ( Clsd `  j )
) )
4342con2d 118 . . . . . . . . 9  |-  ( j  e.  On  ->  ( A. a  e.  U. j { a }  e.  ( Clsd `  j )  ->  -.  2o  e.  j ) )
444, 43syl5 33 . . . . . . . 8  |-  ( j  e.  On  ->  (
j  e.  Fre  ->  -.  2o  e.  j ) )
45 2on 7195 . . . . . . . . 9  |-  2o  e.  On
46 ontri1 5473 . . . . . . . . . 10  |-  ( ( j  e.  On  /\  2o  e.  On )  -> 
( j  C_  2o  <->  -.  2o  e.  j ) )
47 onsssuc 5526 . . . . . . . . . 10  |-  ( ( j  e.  On  /\  2o  e.  On )  -> 
( j  C_  2o  <->  j  e.  suc  2o ) )
4846, 47bitr3d 258 . . . . . . . . 9  |-  ( ( j  e.  On  /\  2o  e.  On )  -> 
( -.  2o  e.  j 
<->  j  e.  suc  2o ) )
4945, 48mpan2 675 . . . . . . . 8  |-  ( j  e.  On  ->  ( -.  2o  e.  j  <->  j  e.  suc  2o ) )
5044, 49sylibd 217 . . . . . . 7  |-  ( j  e.  On  ->  (
j  e.  Fre  ->  j  e.  suc  2o ) )
5150imp 430 . . . . . 6  |-  ( ( j  e.  On  /\  j  e.  Fre )  ->  j  e.  suc  2o )
52 0ntop 19922 . . . . . . . . . 10  |-  -.  (/)  e.  Top
53 t1top 20333 . . . . . . . . . 10  |-  ( (/)  e.  Fre  ->  (/)  e.  Top )
5452, 53mto 179 . . . . . . . . 9  |-  -.  (/)  e.  Fre
55 nelneq 2539 . . . . . . . . 9  |-  ( ( j  e.  Fre  /\  -.  (/)  e.  Fre )  ->  -.  j  =  (/) )
5654, 55mpan2 675 . . . . . . . 8  |-  ( j  e.  Fre  ->  -.  j  =  (/) )
57 elsni 4021 . . . . . . . 8  |-  ( j  e.  { (/) }  ->  j  =  (/) )
5856, 57nsyl 124 . . . . . . 7  |-  ( j  e.  Fre  ->  -.  j  e.  { (/) } )
5958adantl 467 . . . . . 6  |-  ( ( j  e.  On  /\  j  e.  Fre )  ->  -.  j  e.  { (/)
} )
6051, 59eldifd 3447 . . . . 5  |-  ( ( j  e.  On  /\  j  e.  Fre )  ->  j  e.  ( suc 
2o  \  { (/) } ) )
611, 60sylbi 198 . . . 4  |-  ( j  e.  ( On  i^i  Fre )  ->  j  e.  ( suc  2o  \  { (/)
} ) )
6261ssriv 3468 . . 3  |-  ( On 
i^i  Fre )  C_  ( suc  2o  \  { (/) } )
63 df-suc 5445 . . . . . 6  |-  suc  2o  =  ( 2o  u.  { 2o } )
6463difeq1i 3579 . . . . 5  |-  ( suc 
2o  \  { (/) } )  =  ( ( 2o  u.  { 2o }
)  \  { (/) } )
65 difundir 3726 . . . . 5  |-  ( ( 2o  u.  { 2o } )  \  { (/)
} )  =  ( ( 2o  \  { (/)
} )  u.  ( { 2o }  \  { (/)
} ) )
6664, 65eqtri 2451 . . . 4  |-  ( suc 
2o  \  { (/) } )  =  ( ( 2o 
\  { (/) } )  u.  ( { 2o }  \  { (/) } ) )
67 df-pr 3999 . . . . 5  |-  { 1o ,  2o }  =  ( { 1o }  u.  { 2o } )
68 df2o3 7200 . . . . . . . . 9  |-  2o  =  { (/) ,  1o }
69 df-pr 3999 . . . . . . . . 9  |-  { (/) ,  1o }  =  ( { (/) }  u.  { 1o } )
7068, 69eqtri 2451 . . . . . . . 8  |-  2o  =  ( { (/) }  u.  { 1o } )
7170difeq1i 3579 . . . . . . 7  |-  ( 2o 
\  { (/) } )  =  ( ( {
(/) }  u.  { 1o } )  \  { (/)
} )
72 difundir 3726 . . . . . . 7  |-  ( ( { (/) }  u.  { 1o } )  \  { (/)
} )  =  ( ( { (/) }  \  { (/) } )  u.  ( { 1o }  \  { (/) } ) )
73 difid 3863 . . . . . . . . 9  |-  ( {
(/) }  \  { (/) } )  =  (/)
74 1n0 7202 . . . . . . . . . . . 12  |-  1o  =/=  (/)
75 disjsn2 4058 . . . . . . . . . . . 12  |-  ( 1o  =/=  (/)  ->  ( { 1o }  i^i  { (/) } )  =  (/) )
7674, 75ax-mp 5 . . . . . . . . . . 11  |-  ( { 1o }  i^i  { (/)
} )  =  (/)
7776difeq2i 3580 . . . . . . . . . 10  |-  ( { 1o }  \  ( { 1o }  i^i  { (/)
} ) )  =  ( { 1o }  \  (/) )
78 difin 3710 . . . . . . . . . 10  |-  ( { 1o }  \  ( { 1o }  i^i  { (/)
} ) )  =  ( { 1o }  \  { (/) } )
79 dif0 3865 . . . . . . . . . 10  |-  ( { 1o }  \  (/) )  =  { 1o }
8077, 78, 793eqtr3i 2459 . . . . . . . . 9  |-  ( { 1o }  \  { (/)
} )  =  { 1o }
8173, 80uneq12i 3618 . . . . . . . 8  |-  ( ( { (/) }  \  { (/)
} )  u.  ( { 1o }  \  { (/)
} ) )  =  ( (/)  u.  { 1o } )
82 uncom 3610 . . . . . . . 8  |-  ( (/)  u. 
{ 1o } )  =  ( { 1o }  u.  (/) )
83 un0 3787 . . . . . . . 8  |-  ( { 1o }  u.  (/) )  =  { 1o }
8481, 82, 833eqtri 2455 . . . . . . 7  |-  ( ( { (/) }  \  { (/)
} )  u.  ( { 1o }  \  { (/)
} ) )  =  { 1o }
8571, 72, 843eqtri 2455 . . . . . 6  |-  ( 2o 
\  { (/) } )  =  { 1o }
86 2on0 7196 . . . . . . . . 9  |-  2o  =/=  (/)
87 disjsn2 4058 . . . . . . . . 9  |-  ( 2o  =/=  (/)  ->  ( { 2o }  i^i  { (/) } )  =  (/) )
8886, 87ax-mp 5 . . . . . . . 8  |-  ( { 2o }  i^i  { (/)
} )  =  (/)
8988difeq2i 3580 . . . . . . 7  |-  ( { 2o }  \  ( { 2o }  i^i  { (/)
} ) )  =  ( { 2o }  \  (/) )
90 difin 3710 . . . . . . 7  |-  ( { 2o }  \  ( { 2o }  i^i  { (/)
} ) )  =  ( { 2o }  \  { (/) } )
91 dif0 3865 . . . . . . 7  |-  ( { 2o }  \  (/) )  =  { 2o }
9289, 90, 913eqtr3i 2459 . . . . . 6  |-  ( { 2o }  \  { (/)
} )  =  { 2o }
9385, 92uneq12i 3618 . . . . 5  |-  ( ( 2o  \  { (/) } )  u.  ( { 2o }  \  { (/)
} ) )  =  ( { 1o }  u.  { 2o } )
9467, 93eqtr4i 2454 . . . 4  |-  { 1o ,  2o }  =  ( ( 2o  \  { (/)
} )  u.  ( { 2o }  \  { (/)
} ) )
9566, 94eqtr4i 2454 . . 3  |-  ( suc 
2o  \  { (/) } )  =  { 1o ,  2o }
9662, 95sseqtri 3496 . 2  |-  ( On 
i^i  Fre )  C_  { 1o ,  2o }
97 ssoninhaus 31101 . . 3  |-  { 1o ,  2o }  C_  ( On  i^i  Haus )
98 haust1 20355 . . . . 5  |-  ( j  e.  Haus  ->  j  e. 
Fre )
9998ssriv 3468 . . . 4  |-  Haus  C_  Fre
100 sslin 3688 . . . 4  |-  ( Haus  C_  Fre  ->  ( On  i^i  Haus )  C_  ( On  i^i  Fre ) )
10199, 100ax-mp 5 . . 3  |-  ( On 
i^i  Haus )  C_  ( On  i^i  Fre )
10297, 101sstri 3473 . 2  |-  { 1o ,  2o }  C_  ( On  i^i  Fre )
10396, 102eqssi 3480 1  |-  ( On 
i^i  Fre )  =  { 1o ,  2o }
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1868    =/= wne 2618   A.wral 2775    \ cdif 3433    u. cun 3434    i^i cin 3435    C_ wss 3436   (/)c0 3761   {csn 3996   {cpr 3998   U.cuni 4216   Oncon0 5439   suc csuc 5441   ` cfv 5598   1oc1o 7180   2oc2o 7181   Topctop 19904   Clsdccld 20018   Frect1 20310   Hauscha 20311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-sep 4543  ax-nul 4552  ax-pow 4599  ax-pr 4657  ax-un 6594
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-ral 2780  df-rex 2781  df-rab 2784  df-v 3083  df-sbc 3300  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-tp 4001  df-op 4003  df-uni 4217  df-br 4421  df-opab 4480  df-mpt 4481  df-tr 4516  df-eprel 4761  df-id 4765  df-po 4771  df-so 4772  df-fr 4809  df-we 4811  df-xp 4856  df-rel 4857  df-cnv 4858  df-co 4859  df-dm 4860  df-ord 5442  df-on 5443  df-suc 5445  df-iota 5562  df-fun 5600  df-fn 5601  df-fv 5606  df-1o 7187  df-2o 7188  df-topgen 15330  df-top 19908  df-topon 19910  df-cld 20021  df-t1 20317  df-haus 20318
This theorem is referenced by:  oninhaus  31103
  Copyright terms: Public domain W3C validator