Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  onin Structured version   Unicode version

Theorem onin 4834
 Description: The intersection of two ordinal numbers is an ordinal number. (Contributed by NM, 7-Apr-1995.)
Assertion
Ref Expression
onin

Proof of Theorem onin
StepHypRef Expression
1 eloni 4813 . . 3
2 eloni 4813 . . 3
3 ordin 4833 . . 3
41, 2, 3syl2an 477 . 2
5 simpl 457 . . 3
6 inex1g 4519 . . 3
7 elong 4811 . . 3
85, 6, 73syl 20 . 2
94, 8mpbird 232 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 184   wa 369   wcel 1757  cvv 3054   cin 3411   word 4802  con0 4803 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1709  ax-7 1729  ax-10 1776  ax-11 1781  ax-12 1793  ax-13 1944  ax-ext 2429  ax-sep 4497 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1702  df-clab 2436  df-cleq 2442  df-clel 2445  df-nfc 2598  df-ral 2797  df-rex 2798  df-v 3056  df-in 3419  df-ss 3426  df-uni 4176  df-tr 4470  df-po 4725  df-so 4726  df-fr 4763  df-we 4765  df-ord 4806  df-on 4807 This theorem is referenced by:  tfrlem5  6925  noreson  27921  ontopbas  28394
 Copyright terms: Public domain W3C validator