MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onfununi Structured version   Unicode version

Theorem onfununi 7065
Description: A property of functions on ordinal numbers. Generalization of Theorem Schema 8E of [Enderton] p. 218. (Contributed by Eric Schmidt, 26-May-2009.)
Hypotheses
Ref Expression
onfununi.1  |-  ( Lim  y  ->  ( F `  y )  =  U_ x  e.  y  ( F `  x )
)
onfununi.2  |-  ( ( x  e.  On  /\  y  e.  On  /\  x  C_  y )  ->  ( F `  x )  C_  ( F `  y
) )
Assertion
Ref Expression
onfununi  |-  ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  ->  ( F `  U. S )  =  U_ x  e.  S  ( F `  x ) )
Distinct variable groups:    x, y, S    x, F, y    x, T
Allowed substitution hint:    T( y)

Proof of Theorem onfununi
StepHypRef Expression
1 ssorduni 6623 . . . . . . . . . 10  |-  ( S 
C_  On  ->  Ord  U. S )
21ad2antrr 730 . . . . . . . . 9  |-  ( ( ( S  C_  On  /\ 
-.  U. S  e.  S
)  /\  S  =/=  (/) )  ->  Ord  U. S
)
3 nelneq 2539 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  S  /\  -.  U. S  e.  S
)  ->  -.  x  =  U. S )
4 elssuni 4245 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  S  ->  x  C_ 
U. S )
54adantl 467 . . . . . . . . . . . . . . . . . . 19  |-  ( ( S  C_  On  /\  x  e.  S )  ->  x  C_ 
U. S )
6 ssel 3458 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( S 
C_  On  ->  ( x  e.  S  ->  x  e.  On ) )
7 eloni 5449 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  e.  On  ->  Ord  x )
86, 7syl6 34 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( S 
C_  On  ->  ( x  e.  S  ->  Ord  x ) )
98imp 430 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( S  C_  On  /\  x  e.  S )  ->  Ord  x )
10 ordsseleq 5468 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( Ord  x  /\  Ord  U. S )  ->  (
x  C_  U. S  <->  ( x  e.  U. S  \/  x  =  U. S ) ) )
119, 1, 10syl2an 479 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( S  C_  On  /\  x  e.  S )  /\  S  C_  On )  ->  ( x  C_  U. S  <->  ( x  e. 
U. S  \/  x  =  U. S ) ) )
1211anabss1 821 . . . . . . . . . . . . . . . . . . 19  |-  ( ( S  C_  On  /\  x  e.  S )  ->  (
x  C_  U. S  <->  ( x  e.  U. S  \/  x  =  U. S ) ) )
135, 12mpbid 213 . . . . . . . . . . . . . . . . . 18  |-  ( ( S  C_  On  /\  x  e.  S )  ->  (
x  e.  U. S  \/  x  =  U. S ) )
1413ord 378 . . . . . . . . . . . . . . . . 17  |-  ( ( S  C_  On  /\  x  e.  S )  ->  ( -.  x  e.  U. S  ->  x  =  U. S
) )
1514con1d 127 . . . . . . . . . . . . . . . 16  |-  ( ( S  C_  On  /\  x  e.  S )  ->  ( -.  x  =  U. S  ->  x  e.  U. S ) )
163, 15syl5 33 . . . . . . . . . . . . . . 15  |-  ( ( S  C_  On  /\  x  e.  S )  ->  (
( x  e.  S  /\  -.  U. S  e.  S )  ->  x  e.  U. S ) )
1716exp4b 610 . . . . . . . . . . . . . 14  |-  ( S 
C_  On  ->  ( x  e.  S  ->  (
x  e.  S  -> 
( -.  U. S  e.  S  ->  x  e. 
U. S ) ) ) )
1817pm2.43d 50 . . . . . . . . . . . . 13  |-  ( S 
C_  On  ->  ( x  e.  S  ->  ( -.  U. S  e.  S  ->  x  e.  U. S
) ) )
1918com23 81 . . . . . . . . . . . 12  |-  ( S 
C_  On  ->  ( -. 
U. S  e.  S  ->  ( x  e.  S  ->  x  e.  U. S
) ) )
2019imp 430 . . . . . . . . . . 11  |-  ( ( S  C_  On  /\  -.  U. S  e.  S )  ->  ( x  e.  S  ->  x  e.  U. S ) )
2120ssrdv 3470 . . . . . . . . . 10  |-  ( ( S  C_  On  /\  -.  U. S  e.  S )  ->  S  C_  U. S
)
22 ssn0 3795 . . . . . . . . . 10  |-  ( ( S  C_  U. S  /\  S  =/=  (/) )  ->  U. S  =/=  (/) )
2321, 22sylan 473 . . . . . . . . 9  |-  ( ( ( S  C_  On  /\ 
-.  U. S  e.  S
)  /\  S  =/=  (/) )  ->  U. S  =/=  (/) )
2421unissd 4240 . . . . . . . . . . 11  |-  ( ( S  C_  On  /\  -.  U. S  e.  S )  ->  U. S  C_  U. U. S )
25 orduniss 5533 . . . . . . . . . . . . 13  |-  ( Ord  U. S  ->  U. U. S  C_  U. S )
261, 25syl 17 . . . . . . . . . . . 12  |-  ( S 
C_  On  ->  U. U. S  C_  U. S )
2726adantr 466 . . . . . . . . . . 11  |-  ( ( S  C_  On  /\  -.  U. S  e.  S )  ->  U. U. S  C_  U. S )
2824, 27eqssd 3481 . . . . . . . . . 10  |-  ( ( S  C_  On  /\  -.  U. S  e.  S )  ->  U. S  =  U. U. S )
2928adantr 466 . . . . . . . . 9  |-  ( ( ( S  C_  On  /\ 
-.  U. S  e.  S
)  /\  S  =/=  (/) )  ->  U. S  = 
U. U. S )
30 df-lim 5444 . . . . . . . . 9  |-  ( Lim  U. S  <->  ( Ord  U. S  /\  U. S  =/=  (/)  /\  U. S  = 
U. U. S ) )
312, 23, 29, 30syl3anbrc 1189 . . . . . . . 8  |-  ( ( ( S  C_  On  /\ 
-.  U. S  e.  S
)  /\  S  =/=  (/) )  ->  Lim  U. S
)
3231an32s 811 . . . . . . 7  |-  ( ( ( S  C_  On  /\  S  =/=  (/) )  /\  -.  U. S  e.  S
)  ->  Lim  U. S
)
33323adantl1 1161 . . . . . 6  |-  ( ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  /\  -.  U. S  e.  S )  ->  Lim  U. S )
34 ssonuni 6624 . . . . . . . . . 10  |-  ( S  e.  T  ->  ( S  C_  On  ->  U. S  e.  On ) )
35 limeq 5451 . . . . . . . . . . . 12  |-  ( y  =  U. S  -> 
( Lim  y  <->  Lim  U. S
) )
36 fveq2 5878 . . . . . . . . . . . . 13  |-  ( y  =  U. S  -> 
( F `  y
)  =  ( F `
 U. S ) )
37 iuneq1 4310 . . . . . . . . . . . . 13  |-  ( y  =  U. S  ->  U_ x  e.  y 
( F `  x
)  =  U_ x  e.  U. S ( F `
 x ) )
3836, 37eqeq12d 2444 . . . . . . . . . . . 12  |-  ( y  =  U. S  -> 
( ( F `  y )  =  U_ x  e.  y  ( F `  x )  <->  ( F `  U. S
)  =  U_ x  e.  U. S ( F `
 x ) ) )
3935, 38imbi12d 321 . . . . . . . . . . 11  |-  ( y  =  U. S  -> 
( ( Lim  y  ->  ( F `  y
)  =  U_ x  e.  y  ( F `  x ) )  <->  ( Lim  U. S  ->  ( F `  U. S )  = 
U_ x  e.  U. S ( F `  x ) ) ) )
40 onfununi.1 . . . . . . . . . . 11  |-  ( Lim  y  ->  ( F `  y )  =  U_ x  e.  y  ( F `  x )
)
4139, 40vtoclg 3139 . . . . . . . . . 10  |-  ( U. S  e.  On  ->  ( Lim  U. S  -> 
( F `  U. S )  =  U_ x  e.  U. S ( F `  x ) ) )
4234, 41syl6 34 . . . . . . . . 9  |-  ( S  e.  T  ->  ( S  C_  On  ->  ( Lim  U. S  ->  ( F `  U. S )  =  U_ x  e. 
U. S ( F `
 x ) ) ) )
4342imp 430 . . . . . . . 8  |-  ( ( S  e.  T  /\  S  C_  On )  -> 
( Lim  U. S  -> 
( F `  U. S )  =  U_ x  e.  U. S ( F `  x ) ) )
44433adant3 1025 . . . . . . 7  |-  ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  ->  ( Lim  U. S  ->  ( F `  U. S )  =  U_ x  e. 
U. S ( F `
 x ) ) )
4544adantr 466 . . . . . 6  |-  ( ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  /\  -.  U. S  e.  S )  ->  ( Lim  U. S  ->  ( F `  U. S )  =  U_ x  e.  U. S ( F `  x ) ) )
4633, 45mpd 15 . . . . 5  |-  ( ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  /\  -.  U. S  e.  S )  ->  ( F `  U. S )  =  U_ x  e.  U. S ( F `  x ) )
47 eluni2 4220 . . . . . . . . . . . 12  |-  ( x  e.  U. S  <->  E. y  e.  S  x  e.  y )
48 ssel 3458 . . . . . . . . . . . . . . . . . 18  |-  ( S 
C_  On  ->  ( y  e.  S  ->  y  e.  On ) )
4948anim1d 566 . . . . . . . . . . . . . . . . 17  |-  ( S 
C_  On  ->  ( ( y  e.  S  /\  x  e.  y )  ->  ( y  e.  On  /\  x  e.  y ) ) )
50 onelon 5464 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  On  /\  x  e.  y )  ->  x  e.  On )
5149, 50syl6 34 . . . . . . . . . . . . . . . 16  |-  ( S 
C_  On  ->  ( ( y  e.  S  /\  x  e.  y )  ->  x  e.  On ) )
5248adantrd 469 . . . . . . . . . . . . . . . 16  |-  ( S 
C_  On  ->  ( ( y  e.  S  /\  x  e.  y )  ->  y  e.  On ) )
53 eloni 5449 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  On  ->  Ord  y )
5448, 53syl6 34 . . . . . . . . . . . . . . . . 17  |-  ( S 
C_  On  ->  ( y  e.  S  ->  Ord  y ) )
55 ordelss 5455 . . . . . . . . . . . . . . . . . 18  |-  ( ( Ord  y  /\  x  e.  y )  ->  x  C_  y )
5655a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( S 
C_  On  ->  ( ( Ord  y  /\  x  e.  y )  ->  x  C_  y ) )
5754, 56syland 483 . . . . . . . . . . . . . . . 16  |-  ( S 
C_  On  ->  ( ( y  e.  S  /\  x  e.  y )  ->  x  C_  y )
)
5851, 52, 573jcad 1186 . . . . . . . . . . . . . . 15  |-  ( S 
C_  On  ->  ( ( y  e.  S  /\  x  e.  y )  ->  ( x  e.  On  /\  y  e.  On  /\  x  C_  y ) ) )
59 onfununi.2 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  On  /\  y  e.  On  /\  x  C_  y )  ->  ( F `  x )  C_  ( F `  y
) )
6058, 59syl6 34 . . . . . . . . . . . . . 14  |-  ( S 
C_  On  ->  ( ( y  e.  S  /\  x  e.  y )  ->  ( F `  x
)  C_  ( F `  y ) ) )
6160expd 437 . . . . . . . . . . . . 13  |-  ( S 
C_  On  ->  ( y  e.  S  ->  (
x  e.  y  -> 
( F `  x
)  C_  ( F `  y ) ) ) )
6261reximdvai 2897 . . . . . . . . . . . 12  |-  ( S 
C_  On  ->  ( E. y  e.  S  x  e.  y  ->  E. y  e.  S  ( F `  x )  C_  ( F `  y )
) )
6347, 62syl5bi 220 . . . . . . . . . . 11  |-  ( S 
C_  On  ->  ( x  e.  U. S  ->  E. y  e.  S  ( F `  x ) 
C_  ( F `  y ) ) )
64 ssiun 4338 . . . . . . . . . . 11  |-  ( E. y  e.  S  ( F `  x ) 
C_  ( F `  y )  ->  ( F `  x )  C_ 
U_ y  e.  S  ( F `  y ) )
6563, 64syl6 34 . . . . . . . . . 10  |-  ( S 
C_  On  ->  ( x  e.  U. S  -> 
( F `  x
)  C_  U_ y  e.  S  ( F `  y ) ) )
6665ralrimiv 2837 . . . . . . . . 9  |-  ( S 
C_  On  ->  A. x  e.  U. S ( F `
 x )  C_  U_ y  e.  S  ( F `  y ) )
67 iunss 4337 . . . . . . . . 9  |-  ( U_ x  e.  U. S ( F `  x ) 
C_  U_ y  e.  S  ( F `  y )  <->  A. x  e.  U. S
( F `  x
)  C_  U_ y  e.  S  ( F `  y ) )
6866, 67sylibr 215 . . . . . . . 8  |-  ( S 
C_  On  ->  U_ x  e.  U. S ( F `
 x )  C_  U_ y  e.  S  ( F `  y ) )
69 fveq2 5878 . . . . . . . . 9  |-  ( y  =  x  ->  ( F `  y )  =  ( F `  x ) )
7069cbviunv 4335 . . . . . . . 8  |-  U_ y  e.  S  ( F `  y )  =  U_ x  e.  S  ( F `  x )
7168, 70syl6sseq 3510 . . . . . . 7  |-  ( S 
C_  On  ->  U_ x  e.  U. S ( F `
 x )  C_  U_ x  e.  S  ( F `  x ) )
72713ad2ant2 1027 . . . . . 6  |-  ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  ->  U_ x  e.  U. S ( F `
 x )  C_  U_ x  e.  S  ( F `  x ) )
7372adantr 466 . . . . 5  |-  ( ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  /\  -.  U. S  e.  S )  ->  U_ x  e.  U. S ( F `  x )  C_  U_ x  e.  S  ( F `  x ) )
7446, 73eqsstrd 3498 . . . 4  |-  ( ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  /\  -.  U. S  e.  S )  ->  ( F `  U. S )  C_  U_ x  e.  S  ( F `  x ) )
7574ex 435 . . 3  |-  ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  ->  ( -.  U. S  e.  S  ->  ( F `  U. S )  C_  U_ x  e.  S  ( F `  x ) ) )
76 fveq2 5878 . . . 4  |-  ( x  =  U. S  -> 
( F `  x
)  =  ( F `
 U. S ) )
7776ssiun2s 4340 . . 3  |-  ( U. S  e.  S  ->  ( F `  U. S
)  C_  U_ x  e.  S  ( F `  x ) )
7875, 77pm2.61d2 163 . 2  |-  ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  ->  ( F `  U. S ) 
C_  U_ x  e.  S  ( F `  x ) )
7934imp 430 . . . . . 6  |-  ( ( S  e.  T  /\  S  C_  On )  ->  U. S  e.  On )
80793adant3 1025 . . . . 5  |-  ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  ->  U. S  e.  On )
8163ad2ant2 1027 . . . . . 6  |-  ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  ->  (
x  e.  S  ->  x  e.  On )
)
824a1i 11 . . . . . 6  |-  ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  ->  (
x  e.  S  ->  x  C_  U. S ) )
8381, 82jcad 535 . . . . 5  |-  ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  ->  (
x  e.  S  -> 
( x  e.  On  /\  x  C_  U. S ) ) )
84 sseq2 3486 . . . . . . . 8  |-  ( y  =  U. S  -> 
( x  C_  y  <->  x 
C_  U. S ) )
8584anbi2d 708 . . . . . . 7  |-  ( y  =  U. S  -> 
( ( x  e.  On  /\  x  C_  y )  <->  ( x  e.  On  /\  x  C_  U. S ) ) )
8636sseq2d 3492 . . . . . . 7  |-  ( y  =  U. S  -> 
( ( F `  x )  C_  ( F `  y )  <->  ( F `  x ) 
C_  ( F `  U. S ) ) )
8785, 86imbi12d 321 . . . . . 6  |-  ( y  =  U. S  -> 
( ( ( x  e.  On  /\  x  C_  y )  ->  ( F `  x )  C_  ( F `  y
) )  <->  ( (
x  e.  On  /\  x  C_  U. S )  ->  ( F `  x )  C_  ( F `  U. S ) ) ) )
88593com12 1209 . . . . . . 7  |-  ( ( y  e.  On  /\  x  e.  On  /\  x  C_  y )  ->  ( F `  x )  C_  ( F `  y
) )
89883expib 1208 . . . . . 6  |-  ( y  e.  On  ->  (
( x  e.  On  /\  x  C_  y )  ->  ( F `  x
)  C_  ( F `  y ) ) )
9087, 89vtoclga 3145 . . . . 5  |-  ( U. S  e.  On  ->  ( ( x  e.  On  /\  x  C_  U. S )  ->  ( F `  x )  C_  ( F `  U. S ) ) )
9180, 83, 90sylsyld 58 . . . 4  |-  ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  ->  (
x  e.  S  -> 
( F `  x
)  C_  ( F `  U. S ) ) )
9291ralrimiv 2837 . . 3  |-  ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  ->  A. x  e.  S  ( F `  x )  C_  ( F `  U. S ) )
93 iunss 4337 . . 3  |-  ( U_ x  e.  S  ( F `  x )  C_  ( F `  U. S )  <->  A. x  e.  S  ( F `  x )  C_  ( F `  U. S ) )
9492, 93sylibr 215 . 2  |-  ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  ->  U_ x  e.  S  ( F `  x )  C_  ( F `  U. S ) )
9578, 94eqssd 3481 1  |-  ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  ->  ( F `  U. S )  =  U_ x  e.  S  ( F `  x ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    \/ wo 369    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1868    =/= wne 2618   A.wral 2775   E.wrex 2776    C_ wss 3436   (/)c0 3761   U.cuni 4216   U_ciun 4296   Ord word 5438   Oncon0 5439   Lim wlim 5440   ` cfv 5598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-sep 4543  ax-nul 4552  ax-pr 4657  ax-un 6594
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-ral 2780  df-rex 2781  df-rab 2784  df-v 3083  df-sbc 3300  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3910  df-sn 3997  df-pr 3999  df-tp 4001  df-op 4003  df-uni 4217  df-iun 4298  df-br 4421  df-opab 4480  df-tr 4516  df-eprel 4761  df-po 4771  df-so 4772  df-fr 4809  df-we 4811  df-ord 5442  df-on 5443  df-lim 5444  df-iota 5562  df-fv 5606
This theorem is referenced by:  onovuni  7066
  Copyright terms: Public domain W3C validator