MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onfununi Structured version   Unicode version

Theorem onfununi 6802
Description: A property of functions on ordinal numbers. Generalization of Theorem Schema 8E of [Enderton] p. 218. (Contributed by Eric Schmidt, 26-May-2009.)
Hypotheses
Ref Expression
onfununi.1  |-  ( Lim  y  ->  ( F `  y )  =  U_ x  e.  y  ( F `  x )
)
onfununi.2  |-  ( ( x  e.  On  /\  y  e.  On  /\  x  C_  y )  ->  ( F `  x )  C_  ( F `  y
) )
Assertion
Ref Expression
onfununi  |-  ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  ->  ( F `  U. S )  =  U_ x  e.  S  ( F `  x ) )
Distinct variable groups:    x, y, S    x, F, y    x, T
Allowed substitution hint:    T( y)

Proof of Theorem onfununi
StepHypRef Expression
1 ssorduni 6397 . . . . . . . . . 10  |-  ( S 
C_  On  ->  Ord  U. S )
21ad2antrr 725 . . . . . . . . 9  |-  ( ( ( S  C_  On  /\ 
-.  U. S  e.  S
)  /\  S  =/=  (/) )  ->  Ord  U. S
)
3 nelneq 2541 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  S  /\  -.  U. S  e.  S
)  ->  -.  x  =  U. S )
4 elssuni 4121 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  S  ->  x  C_ 
U. S )
54adantl 466 . . . . . . . . . . . . . . . . . . 19  |-  ( ( S  C_  On  /\  x  e.  S )  ->  x  C_ 
U. S )
6 ssel 3350 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( S 
C_  On  ->  ( x  e.  S  ->  x  e.  On ) )
7 eloni 4729 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  e.  On  ->  Ord  x )
86, 7syl6 33 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( S 
C_  On  ->  ( x  e.  S  ->  Ord  x ) )
98imp 429 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( S  C_  On  /\  x  e.  S )  ->  Ord  x )
10 ordsseleq 4748 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( Ord  x  /\  Ord  U. S )  ->  (
x  C_  U. S  <->  ( x  e.  U. S  \/  x  =  U. S ) ) )
119, 1, 10syl2an 477 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( S  C_  On  /\  x  e.  S )  /\  S  C_  On )  ->  ( x  C_  U. S  <->  ( x  e. 
U. S  \/  x  =  U. S ) ) )
1211anabss1 810 . . . . . . . . . . . . . . . . . . 19  |-  ( ( S  C_  On  /\  x  e.  S )  ->  (
x  C_  U. S  <->  ( x  e.  U. S  \/  x  =  U. S ) ) )
135, 12mpbid 210 . . . . . . . . . . . . . . . . . 18  |-  ( ( S  C_  On  /\  x  e.  S )  ->  (
x  e.  U. S  \/  x  =  U. S ) )
1413ord 377 . . . . . . . . . . . . . . . . 17  |-  ( ( S  C_  On  /\  x  e.  S )  ->  ( -.  x  e.  U. S  ->  x  =  U. S
) )
1514con1d 124 . . . . . . . . . . . . . . . 16  |-  ( ( S  C_  On  /\  x  e.  S )  ->  ( -.  x  =  U. S  ->  x  e.  U. S ) )
163, 15syl5 32 . . . . . . . . . . . . . . 15  |-  ( ( S  C_  On  /\  x  e.  S )  ->  (
( x  e.  S  /\  -.  U. S  e.  S )  ->  x  e.  U. S ) )
1716exp4b 607 . . . . . . . . . . . . . 14  |-  ( S 
C_  On  ->  ( x  e.  S  ->  (
x  e.  S  -> 
( -.  U. S  e.  S  ->  x  e. 
U. S ) ) ) )
1817pm2.43d 48 . . . . . . . . . . . . 13  |-  ( S 
C_  On  ->  ( x  e.  S  ->  ( -.  U. S  e.  S  ->  x  e.  U. S
) ) )
1918com23 78 . . . . . . . . . . . 12  |-  ( S 
C_  On  ->  ( -. 
U. S  e.  S  ->  ( x  e.  S  ->  x  e.  U. S
) ) )
2019imp 429 . . . . . . . . . . 11  |-  ( ( S  C_  On  /\  -.  U. S  e.  S )  ->  ( x  e.  S  ->  x  e.  U. S ) )
2120ssrdv 3362 . . . . . . . . . 10  |-  ( ( S  C_  On  /\  -.  U. S  e.  S )  ->  S  C_  U. S
)
22 ssn0 3670 . . . . . . . . . 10  |-  ( ( S  C_  U. S  /\  S  =/=  (/) )  ->  U. S  =/=  (/) )
2321, 22sylan 471 . . . . . . . . 9  |-  ( ( ( S  C_  On  /\ 
-.  U. S  e.  S
)  /\  S  =/=  (/) )  ->  U. S  =/=  (/) )
2421unissd 4115 . . . . . . . . . . 11  |-  ( ( S  C_  On  /\  -.  U. S  e.  S )  ->  U. S  C_  U. U. S )
25 orduniss 4813 . . . . . . . . . . . . 13  |-  ( Ord  U. S  ->  U. U. S  C_  U. S )
261, 25syl 16 . . . . . . . . . . . 12  |-  ( S 
C_  On  ->  U. U. S  C_  U. S )
2726adantr 465 . . . . . . . . . . 11  |-  ( ( S  C_  On  /\  -.  U. S  e.  S )  ->  U. U. S  C_  U. S )
2824, 27eqssd 3373 . . . . . . . . . 10  |-  ( ( S  C_  On  /\  -.  U. S  e.  S )  ->  U. S  =  U. U. S )
2928adantr 465 . . . . . . . . 9  |-  ( ( ( S  C_  On  /\ 
-.  U. S  e.  S
)  /\  S  =/=  (/) )  ->  U. S  = 
U. U. S )
30 df-lim 4724 . . . . . . . . 9  |-  ( Lim  U. S  <->  ( Ord  U. S  /\  U. S  =/=  (/)  /\  U. S  = 
U. U. S ) )
312, 23, 29, 30syl3anbrc 1172 . . . . . . . 8  |-  ( ( ( S  C_  On  /\ 
-.  U. S  e.  S
)  /\  S  =/=  (/) )  ->  Lim  U. S
)
3231an32s 802 . . . . . . 7  |-  ( ( ( S  C_  On  /\  S  =/=  (/) )  /\  -.  U. S  e.  S
)  ->  Lim  U. S
)
33323adantl1 1144 . . . . . 6  |-  ( ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  /\  -.  U. S  e.  S )  ->  Lim  U. S )
34 ssonuni 6398 . . . . . . . . . 10  |-  ( S  e.  T  ->  ( S  C_  On  ->  U. S  e.  On ) )
35 limeq 4731 . . . . . . . . . . . 12  |-  ( y  =  U. S  -> 
( Lim  y  <->  Lim  U. S
) )
36 fveq2 5691 . . . . . . . . . . . . 13  |-  ( y  =  U. S  -> 
( F `  y
)  =  ( F `
 U. S ) )
37 iuneq1 4184 . . . . . . . . . . . . 13  |-  ( y  =  U. S  ->  U_ x  e.  y 
( F `  x
)  =  U_ x  e.  U. S ( F `
 x ) )
3836, 37eqeq12d 2457 . . . . . . . . . . . 12  |-  ( y  =  U. S  -> 
( ( F `  y )  =  U_ x  e.  y  ( F `  x )  <->  ( F `  U. S
)  =  U_ x  e.  U. S ( F `
 x ) ) )
3935, 38imbi12d 320 . . . . . . . . . . 11  |-  ( y  =  U. S  -> 
( ( Lim  y  ->  ( F `  y
)  =  U_ x  e.  y  ( F `  x ) )  <->  ( Lim  U. S  ->  ( F `  U. S )  = 
U_ x  e.  U. S ( F `  x ) ) ) )
40 onfununi.1 . . . . . . . . . . 11  |-  ( Lim  y  ->  ( F `  y )  =  U_ x  e.  y  ( F `  x )
)
4139, 40vtoclg 3030 . . . . . . . . . 10  |-  ( U. S  e.  On  ->  ( Lim  U. S  -> 
( F `  U. S )  =  U_ x  e.  U. S ( F `  x ) ) )
4234, 41syl6 33 . . . . . . . . 9  |-  ( S  e.  T  ->  ( S  C_  On  ->  ( Lim  U. S  ->  ( F `  U. S )  =  U_ x  e. 
U. S ( F `
 x ) ) ) )
4342imp 429 . . . . . . . 8  |-  ( ( S  e.  T  /\  S  C_  On )  -> 
( Lim  U. S  -> 
( F `  U. S )  =  U_ x  e.  U. S ( F `  x ) ) )
44433adant3 1008 . . . . . . 7  |-  ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  ->  ( Lim  U. S  ->  ( F `  U. S )  =  U_ x  e. 
U. S ( F `
 x ) ) )
4544adantr 465 . . . . . 6  |-  ( ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  /\  -.  U. S  e.  S )  ->  ( Lim  U. S  ->  ( F `  U. S )  =  U_ x  e.  U. S ( F `  x ) ) )
4633, 45mpd 15 . . . . 5  |-  ( ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  /\  -.  U. S  e.  S )  ->  ( F `  U. S )  =  U_ x  e.  U. S ( F `  x ) )
47 eluni2 4095 . . . . . . . . . . . 12  |-  ( x  e.  U. S  <->  E. y  e.  S  x  e.  y )
48 ssel 3350 . . . . . . . . . . . . . . . . . 18  |-  ( S 
C_  On  ->  ( y  e.  S  ->  y  e.  On ) )
4948anim1d 564 . . . . . . . . . . . . . . . . 17  |-  ( S 
C_  On  ->  ( ( y  e.  S  /\  x  e.  y )  ->  ( y  e.  On  /\  x  e.  y ) ) )
50 onelon 4744 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  On  /\  x  e.  y )  ->  x  e.  On )
5149, 50syl6 33 . . . . . . . . . . . . . . . 16  |-  ( S 
C_  On  ->  ( ( y  e.  S  /\  x  e.  y )  ->  x  e.  On ) )
5248adantrd 468 . . . . . . . . . . . . . . . 16  |-  ( S 
C_  On  ->  ( ( y  e.  S  /\  x  e.  y )  ->  y  e.  On ) )
53 eloni 4729 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  On  ->  Ord  y )
5448, 53syl6 33 . . . . . . . . . . . . . . . . 17  |-  ( S 
C_  On  ->  ( y  e.  S  ->  Ord  y ) )
55 ordelss 4735 . . . . . . . . . . . . . . . . . 18  |-  ( ( Ord  y  /\  x  e.  y )  ->  x  C_  y )
5655a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( S 
C_  On  ->  ( ( Ord  y  /\  x  e.  y )  ->  x  C_  y ) )
5754, 56syland 481 . . . . . . . . . . . . . . . 16  |-  ( S 
C_  On  ->  ( ( y  e.  S  /\  x  e.  y )  ->  x  C_  y )
)
5851, 52, 573jcad 1169 . . . . . . . . . . . . . . 15  |-  ( S 
C_  On  ->  ( ( y  e.  S  /\  x  e.  y )  ->  ( x  e.  On  /\  y  e.  On  /\  x  C_  y ) ) )
59 onfununi.2 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  On  /\  y  e.  On  /\  x  C_  y )  ->  ( F `  x )  C_  ( F `  y
) )
6058, 59syl6 33 . . . . . . . . . . . . . 14  |-  ( S 
C_  On  ->  ( ( y  e.  S  /\  x  e.  y )  ->  ( F `  x
)  C_  ( F `  y ) ) )
6160expd 436 . . . . . . . . . . . . 13  |-  ( S 
C_  On  ->  ( y  e.  S  ->  (
x  e.  y  -> 
( F `  x
)  C_  ( F `  y ) ) ) )
6261reximdvai 2826 . . . . . . . . . . . 12  |-  ( S 
C_  On  ->  ( E. y  e.  S  x  e.  y  ->  E. y  e.  S  ( F `  x )  C_  ( F `  y )
) )
6347, 62syl5bi 217 . . . . . . . . . . 11  |-  ( S 
C_  On  ->  ( x  e.  U. S  ->  E. y  e.  S  ( F `  x ) 
C_  ( F `  y ) ) )
64 ssiun 4212 . . . . . . . . . . 11  |-  ( E. y  e.  S  ( F `  x ) 
C_  ( F `  y )  ->  ( F `  x )  C_ 
U_ y  e.  S  ( F `  y ) )
6563, 64syl6 33 . . . . . . . . . 10  |-  ( S 
C_  On  ->  ( x  e.  U. S  -> 
( F `  x
)  C_  U_ y  e.  S  ( F `  y ) ) )
6665ralrimiv 2798 . . . . . . . . 9  |-  ( S 
C_  On  ->  A. x  e.  U. S ( F `
 x )  C_  U_ y  e.  S  ( F `  y ) )
67 iunss 4211 . . . . . . . . 9  |-  ( U_ x  e.  U. S ( F `  x ) 
C_  U_ y  e.  S  ( F `  y )  <->  A. x  e.  U. S
( F `  x
)  C_  U_ y  e.  S  ( F `  y ) )
6866, 67sylibr 212 . . . . . . . 8  |-  ( S 
C_  On  ->  U_ x  e.  U. S ( F `
 x )  C_  U_ y  e.  S  ( F `  y ) )
69 fveq2 5691 . . . . . . . . 9  |-  ( y  =  x  ->  ( F `  y )  =  ( F `  x ) )
7069cbviunv 4209 . . . . . . . 8  |-  U_ y  e.  S  ( F `  y )  =  U_ x  e.  S  ( F `  x )
7168, 70syl6sseq 3402 . . . . . . 7  |-  ( S 
C_  On  ->  U_ x  e.  U. S ( F `
 x )  C_  U_ x  e.  S  ( F `  x ) )
72713ad2ant2 1010 . . . . . 6  |-  ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  ->  U_ x  e.  U. S ( F `
 x )  C_  U_ x  e.  S  ( F `  x ) )
7372adantr 465 . . . . 5  |-  ( ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  /\  -.  U. S  e.  S )  ->  U_ x  e.  U. S ( F `  x )  C_  U_ x  e.  S  ( F `  x ) )
7446, 73eqsstrd 3390 . . . 4  |-  ( ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  /\  -.  U. S  e.  S )  ->  ( F `  U. S )  C_  U_ x  e.  S  ( F `  x ) )
7574ex 434 . . 3  |-  ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  ->  ( -.  U. S  e.  S  ->  ( F `  U. S )  C_  U_ x  e.  S  ( F `  x ) ) )
76 fveq2 5691 . . . 4  |-  ( x  =  U. S  -> 
( F `  x
)  =  ( F `
 U. S ) )
7776ssiun2s 4214 . . 3  |-  ( U. S  e.  S  ->  ( F `  U. S
)  C_  U_ x  e.  S  ( F `  x ) )
7875, 77pm2.61d2 160 . 2  |-  ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  ->  ( F `  U. S ) 
C_  U_ x  e.  S  ( F `  x ) )
7934imp 429 . . . . . 6  |-  ( ( S  e.  T  /\  S  C_  On )  ->  U. S  e.  On )
80793adant3 1008 . . . . 5  |-  ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  ->  U. S  e.  On )
8163ad2ant2 1010 . . . . . 6  |-  ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  ->  (
x  e.  S  ->  x  e.  On )
)
824a1i 11 . . . . . 6  |-  ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  ->  (
x  e.  S  ->  x  C_  U. S ) )
8381, 82jcad 533 . . . . 5  |-  ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  ->  (
x  e.  S  -> 
( x  e.  On  /\  x  C_  U. S ) ) )
84 sseq2 3378 . . . . . . . 8  |-  ( y  =  U. S  -> 
( x  C_  y  <->  x 
C_  U. S ) )
8584anbi2d 703 . . . . . . 7  |-  ( y  =  U. S  -> 
( ( x  e.  On  /\  x  C_  y )  <->  ( x  e.  On  /\  x  C_  U. S ) ) )
8636sseq2d 3384 . . . . . . 7  |-  ( y  =  U. S  -> 
( ( F `  x )  C_  ( F `  y )  <->  ( F `  x ) 
C_  ( F `  U. S ) ) )
8785, 86imbi12d 320 . . . . . 6  |-  ( y  =  U. S  -> 
( ( ( x  e.  On  /\  x  C_  y )  ->  ( F `  x )  C_  ( F `  y
) )  <->  ( (
x  e.  On  /\  x  C_  U. S )  ->  ( F `  x )  C_  ( F `  U. S ) ) ) )
88593com12 1191 . . . . . . 7  |-  ( ( y  e.  On  /\  x  e.  On  /\  x  C_  y )  ->  ( F `  x )  C_  ( F `  y
) )
89883expib 1190 . . . . . 6  |-  ( y  e.  On  ->  (
( x  e.  On  /\  x  C_  y )  ->  ( F `  x
)  C_  ( F `  y ) ) )
9087, 89vtoclga 3036 . . . . 5  |-  ( U. S  e.  On  ->  ( ( x  e.  On  /\  x  C_  U. S )  ->  ( F `  x )  C_  ( F `  U. S ) ) )
9180, 83, 90sylsyld 56 . . . 4  |-  ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  ->  (
x  e.  S  -> 
( F `  x
)  C_  ( F `  U. S ) ) )
9291ralrimiv 2798 . . 3  |-  ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  ->  A. x  e.  S  ( F `  x )  C_  ( F `  U. S ) )
93 iunss 4211 . . 3  |-  ( U_ x  e.  S  ( F `  x )  C_  ( F `  U. S )  <->  A. x  e.  S  ( F `  x )  C_  ( F `  U. S ) )
9492, 93sylibr 212 . 2  |-  ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  ->  U_ x  e.  S  ( F `  x )  C_  ( F `  U. S ) )
9578, 94eqssd 3373 1  |-  ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  ->  ( F `  U. S )  =  U_ x  e.  S  ( F `  x ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2606   A.wral 2715   E.wrex 2716    C_ wss 3328   (/)c0 3637   U.cuni 4091   U_ciun 4171   Ord word 4718   Oncon0 4719   Lim wlim 4720   ` cfv 5418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pr 4531  ax-un 6372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-rab 2724  df-v 2974  df-sbc 3187  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-iun 4173  df-br 4293  df-opab 4351  df-tr 4386  df-eprel 4632  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-iota 5381  df-fv 5426
This theorem is referenced by:  onovuni  6803
  Copyright terms: Public domain W3C validator