Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onfrALTlem5 Structured version   Unicode version

Theorem onfrALTlem5 36821
Description: Lemma for onfrALT 36828. (Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
onfrALTlem5  |-  ( [. ( a  i^i  x
)  /  b ]. ( ( b  C_  ( a  i^i  x
)  /\  b  =/=  (/) )  ->  E. y  e.  b  ( b  i^i  y )  =  (/) ) 
<->  ( ( ( a  i^i  x )  C_  ( a  i^i  x
)  /\  ( a  i^i  x )  =/=  (/) )  ->  E. y  e.  (
a  i^i  x )
( ( a  i^i  x )  i^i  y
)  =  (/) ) )
Distinct variable groups:    a, b,
y    x, b, y

Proof of Theorem onfrALTlem5
StepHypRef Expression
1 vex 3025 . . . 4  |-  a  e. 
_V
21inex1 4508 . . 3  |-  ( a  i^i  x )  e. 
_V
3 sbcimg 3284 . . 3  |-  ( ( a  i^i  x )  e.  _V  ->  ( [. ( a  i^i  x
)  /  b ]. ( ( b  C_  ( a  i^i  x
)  /\  b  =/=  (/) )  ->  E. y  e.  b  ( b  i^i  y )  =  (/) ) 
<->  ( [. ( a  i^i  x )  / 
b ]. ( b  C_  ( a  i^i  x
)  /\  b  =/=  (/) )  ->  [. ( a  i^i  x )  / 
b ]. E. y  e.  b  ( b  i^i  y )  =  (/) ) ) )
42, 3ax-mp 5 . 2  |-  ( [. ( a  i^i  x
)  /  b ]. ( ( b  C_  ( a  i^i  x
)  /\  b  =/=  (/) )  ->  E. y  e.  b  ( b  i^i  y )  =  (/) ) 
<->  ( [. ( a  i^i  x )  / 
b ]. ( b  C_  ( a  i^i  x
)  /\  b  =/=  (/) )  ->  [. ( a  i^i  x )  / 
b ]. E. y  e.  b  ( b  i^i  y )  =  (/) ) )
5 sbcan 3285 . . . 4  |-  ( [. ( a  i^i  x
)  /  b ]. ( b  C_  (
a  i^i  x )  /\  b  =/=  (/) )  <->  ( [. ( a  i^i  x
)  /  b ]. b  C_  ( a  i^i  x )  /\  [. (
a  i^i  x )  /  b ]. b  =/=  (/) ) )
6 sseq1 3428 . . . . . 6  |-  ( b  =  ( a  i^i  x )  ->  (
b  C_  ( a  i^i  x )  <->  ( a  i^i  x )  C_  (
a  i^i  x )
) )
72, 6sbcie 3277 . . . . 5  |-  ( [. ( a  i^i  x
)  /  b ]. b  C_  ( a  i^i  x )  <->  ( a  i^i  x )  C_  (
a  i^i  x )
)
8 df-ne 2601 . . . . . . 7  |-  ( b  =/=  (/)  <->  -.  b  =  (/) )
98sbcbii 3298 . . . . . 6  |-  ( [. ( a  i^i  x
)  /  b ]. b  =/=  (/)  <->  [. ( a  i^i  x )  /  b ].  -.  b  =  (/) )
10 sbcng 3283 . . . . . . . 8  |-  ( ( a  i^i  x )  e.  _V  ->  ( [. ( a  i^i  x
)  /  b ].  -.  b  =  (/)  <->  -.  [. (
a  i^i  x )  /  b ]. b  =  (/) ) )
1110bicomd 204 . . . . . . 7  |-  ( ( a  i^i  x )  e.  _V  ->  ( -.  [. ( a  i^i  x )  /  b ]. b  =  (/)  <->  [. ( a  i^i  x )  / 
b ].  -.  b  =  (/) ) )
122, 11ax-mp 5 . . . . . 6  |-  ( -. 
[. ( a  i^i  x )  /  b ]. b  =  (/)  <->  [. ( a  i^i  x )  / 
b ].  -.  b  =  (/) )
13 eqsbc3 3282 . . . . . . . 8  |-  ( ( a  i^i  x )  e.  _V  ->  ( [. ( a  i^i  x
)  /  b ]. b  =  (/)  <->  ( a  i^i  x )  =  (/) ) )
142, 13ax-mp 5 . . . . . . 7  |-  ( [. ( a  i^i  x
)  /  b ]. b  =  (/)  <->  ( a  i^i  x )  =  (/) )
1514necon3bbii 2648 . . . . . 6  |-  ( -. 
[. ( a  i^i  x )  /  b ]. b  =  (/)  <->  ( a  i^i  x )  =/=  (/) )
169, 12, 153bitr2i 276 . . . . 5  |-  ( [. ( a  i^i  x
)  /  b ]. b  =/=  (/)  <->  ( a  i^i  x )  =/=  (/) )
177, 16anbi12i 701 . . . 4  |-  ( (
[. ( a  i^i  x )  /  b ]. b  C_  ( a  i^i  x )  /\  [. ( a  i^i  x
)  /  b ]. b  =/=  (/) )  <->  ( (
a  i^i  x )  C_  ( a  i^i  x
)  /\  ( a  i^i  x )  =/=  (/) ) )
185, 17bitri 252 . . 3  |-  ( [. ( a  i^i  x
)  /  b ]. ( b  C_  (
a  i^i  x )  /\  b  =/=  (/) )  <->  ( (
a  i^i  x )  C_  ( a  i^i  x
)  /\  ( a  i^i  x )  =/=  (/) ) )
19 df-rex 2720 . . . . 5  |-  ( E. y  e.  b  ( b  i^i  y )  =  (/)  <->  E. y ( y  e.  b  /\  (
b  i^i  y )  =  (/) ) )
2019sbcbii 3298 . . . 4  |-  ( [. ( a  i^i  x
)  /  b ]. E. y  e.  b 
( b  i^i  y
)  =  (/)  <->  [. ( a  i^i  x )  / 
b ]. E. y ( y  e.  b  /\  ( b  i^i  y
)  =  (/) ) )
21 sbcan 3285 . . . . . . 7  |-  ( [. ( a  i^i  x
)  /  b ]. ( y  e.  b  /\  ( b  i^i  y )  =  (/) ) 
<->  ( [. ( a  i^i  x )  / 
b ]. y  e.  b  /\  [. ( a  i^i  x )  / 
b ]. ( b  i^i  y )  =  (/) ) )
22 sbcel2gv 3302 . . . . . . . . 9  |-  ( ( a  i^i  x )  e.  _V  ->  ( [. ( a  i^i  x
)  /  b ]. y  e.  b  <->  y  e.  ( a  i^i  x
) ) )
232, 22ax-mp 5 . . . . . . . 8  |-  ( [. ( a  i^i  x
)  /  b ]. y  e.  b  <->  y  e.  ( a  i^i  x
) )
24 sbceqg 3746 . . . . . . . . . 10  |-  ( ( a  i^i  x )  e.  _V  ->  ( [. ( a  i^i  x
)  /  b ]. ( b  i^i  y
)  =  (/)  <->  [_ ( a  i^i  x )  / 
b ]_ ( b  i^i  y )  =  [_ ( a  i^i  x
)  /  b ]_ (/) ) )
252, 24ax-mp 5 . . . . . . . . 9  |-  ( [. ( a  i^i  x
)  /  b ]. ( b  i^i  y
)  =  (/)  <->  [_ ( a  i^i  x )  / 
b ]_ ( b  i^i  y )  =  [_ ( a  i^i  x
)  /  b ]_ (/) )
26 csbin 3772 . . . . . . . . . . 11  |-  [_ (
a  i^i  x )  /  b ]_ (
b  i^i  y )  =  ( [_ (
a  i^i  x )  /  b ]_ b  i^i  [_ ( a  i^i  x )  /  b ]_ y )
27 csbvarg 3765 . . . . . . . . . . . . 13  |-  ( ( a  i^i  x )  e.  _V  ->  [_ (
a  i^i  x )  /  b ]_ b  =  ( a  i^i  x ) )
282, 27ax-mp 5 . . . . . . . . . . . 12  |-  [_ (
a  i^i  x )  /  b ]_ b  =  ( a  i^i  x )
29 csbconstg 3351 . . . . . . . . . . . . 13  |-  ( ( a  i^i  x )  e.  _V  ->  [_ (
a  i^i  x )  /  b ]_ y  =  y )
302, 29ax-mp 5 . . . . . . . . . . . 12  |-  [_ (
a  i^i  x )  /  b ]_ y  =  y
3128, 30ineq12i 3605 . . . . . . . . . . 11  |-  ( [_ ( a  i^i  x
)  /  b ]_ b  i^i  [_ ( a  i^i  x )  /  b ]_ y )  =  ( ( a  i^i  x
)  i^i  y )
3226, 31eqtri 2450 . . . . . . . . . 10  |-  [_ (
a  i^i  x )  /  b ]_ (
b  i^i  y )  =  ( ( a  i^i  x )  i^i  y )
33 csb0 3744 . . . . . . . . . 10  |-  [_ (
a  i^i  x )  /  b ]_ (/)  =  (/)
3432, 33eqeq12i 2442 . . . . . . . . 9  |-  ( [_ ( a  i^i  x
)  /  b ]_ ( b  i^i  y
)  =  [_ (
a  i^i  x )  /  b ]_ (/)  <->  ( (
a  i^i  x )  i^i  y )  =  (/) )
3525, 34bitri 252 . . . . . . . 8  |-  ( [. ( a  i^i  x
)  /  b ]. ( b  i^i  y
)  =  (/)  <->  ( (
a  i^i  x )  i^i  y )  =  (/) )
3623, 35anbi12i 701 . . . . . . 7  |-  ( (
[. ( a  i^i  x )  /  b ]. y  e.  b  /\  [. ( a  i^i  x )  /  b ]. ( b  i^i  y
)  =  (/) )  <->  ( y  e.  ( a  i^i  x
)  /\  ( (
a  i^i  x )  i^i  y )  =  (/) ) )
3721, 36bitri 252 . . . . . 6  |-  ( [. ( a  i^i  x
)  /  b ]. ( y  e.  b  /\  ( b  i^i  y )  =  (/) ) 
<->  ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) ) )
3837exbii 1712 . . . . 5  |-  ( E. y [. ( a  i^i  x )  / 
b ]. ( y  e.  b  /\  ( b  i^i  y )  =  (/) )  <->  E. y ( y  e.  ( a  i^i  x )  /\  (
( a  i^i  x
)  i^i  y )  =  (/) ) )
39 sbcex2 3293 . . . . 5  |-  ( [. ( a  i^i  x
)  /  b ]. E. y ( y  e.  b  /\  ( b  i^i  y )  =  (/) )  <->  E. y [. (
a  i^i  x )  /  b ]. (
y  e.  b  /\  ( b  i^i  y
)  =  (/) ) )
40 df-rex 2720 . . . . 5  |-  ( E. y  e.  ( a  i^i  x ) ( ( a  i^i  x
)  i^i  y )  =  (/)  <->  E. y ( y  e.  ( a  i^i  x )  /\  (
( a  i^i  x
)  i^i  y )  =  (/) ) )
4138, 39, 403bitr4i 280 . . . 4  |-  ( [. ( a  i^i  x
)  /  b ]. E. y ( y  e.  b  /\  ( b  i^i  y )  =  (/) )  <->  E. y  e.  ( a  i^i  x ) ( ( a  i^i  x )  i^i  y
)  =  (/) )
4220, 41bitri 252 . . 3  |-  ( [. ( a  i^i  x
)  /  b ]. E. y  e.  b 
( b  i^i  y
)  =  (/)  <->  E. y  e.  ( a  i^i  x
) ( ( a  i^i  x )  i^i  y )  =  (/) )
4318, 42imbi12i 327 . 2  |-  ( (
[. ( a  i^i  x )  /  b ]. ( b  C_  (
a  i^i  x )  /\  b  =/=  (/) )  ->  [. ( a  i^i  x
)  /  b ]. E. y  e.  b 
( b  i^i  y
)  =  (/) )  <->  ( (
( a  i^i  x
)  C_  ( a  i^i  x )  /\  (
a  i^i  x )  =/=  (/) )  ->  E. y  e.  ( a  i^i  x
) ( ( a  i^i  x )  i^i  y )  =  (/) ) )
444, 43bitri 252 1  |-  ( [. ( a  i^i  x
)  /  b ]. ( ( b  C_  ( a  i^i  x
)  /\  b  =/=  (/) )  ->  E. y  e.  b  ( b  i^i  y )  =  (/) ) 
<->  ( ( ( a  i^i  x )  C_  ( a  i^i  x
)  /\  ( a  i^i  x )  =/=  (/) )  ->  E. y  e.  (
a  i^i  x )
( ( a  i^i  x )  i^i  y
)  =  (/) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437   E.wex 1657    e. wcel 1872    =/= wne 2599   E.wrex 2715   _Vcvv 3022   [.wsbc 3242   [_csb 3338    i^i cin 3378    C_ wss 3379   (/)c0 3704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-sep 4489
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1658  df-nf 1662  df-sb 1791  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-rex 2720  df-rab 2723  df-v 3024  df-sbc 3243  df-csb 3339  df-dif 3382  df-in 3386  df-ss 3393  df-nul 3705
This theorem is referenced by:  onfrALTlem3  36823  onfrALTlem3VD  37200
  Copyright terms: Public domain W3C validator