Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onfrALTlem5 Structured version   Visualization version   Unicode version

Theorem onfrALTlem5 36952
Description: Lemma for onfrALT 36959. (Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
onfrALTlem5  |-  ( [. ( a  i^i  x
)  /  b ]. ( ( b  C_  ( a  i^i  x
)  /\  b  =/=  (/) )  ->  E. y  e.  b  ( b  i^i  y )  =  (/) ) 
<->  ( ( ( a  i^i  x )  C_  ( a  i^i  x
)  /\  ( a  i^i  x )  =/=  (/) )  ->  E. y  e.  (
a  i^i  x )
( ( a  i^i  x )  i^i  y
)  =  (/) ) )
Distinct variable groups:    a, b,
y    x, b, y

Proof of Theorem onfrALTlem5
StepHypRef Expression
1 vex 3060 . . . 4  |-  a  e. 
_V
21inex1 4558 . . 3  |-  ( a  i^i  x )  e. 
_V
3 sbcimg 3321 . . 3  |-  ( ( a  i^i  x )  e.  _V  ->  ( [. ( a  i^i  x
)  /  b ]. ( ( b  C_  ( a  i^i  x
)  /\  b  =/=  (/) )  ->  E. y  e.  b  ( b  i^i  y )  =  (/) ) 
<->  ( [. ( a  i^i  x )  / 
b ]. ( b  C_  ( a  i^i  x
)  /\  b  =/=  (/) )  ->  [. ( a  i^i  x )  / 
b ]. E. y  e.  b  ( b  i^i  y )  =  (/) ) ) )
42, 3ax-mp 5 . 2  |-  ( [. ( a  i^i  x
)  /  b ]. ( ( b  C_  ( a  i^i  x
)  /\  b  =/=  (/) )  ->  E. y  e.  b  ( b  i^i  y )  =  (/) ) 
<->  ( [. ( a  i^i  x )  / 
b ]. ( b  C_  ( a  i^i  x
)  /\  b  =/=  (/) )  ->  [. ( a  i^i  x )  / 
b ]. E. y  e.  b  ( b  i^i  y )  =  (/) ) )
5 sbcan 3322 . . . 4  |-  ( [. ( a  i^i  x
)  /  b ]. ( b  C_  (
a  i^i  x )  /\  b  =/=  (/) )  <->  ( [. ( a  i^i  x
)  /  b ]. b  C_  ( a  i^i  x )  /\  [. (
a  i^i  x )  /  b ]. b  =/=  (/) ) )
6 sseq1 3465 . . . . . 6  |-  ( b  =  ( a  i^i  x )  ->  (
b  C_  ( a  i^i  x )  <->  ( a  i^i  x )  C_  (
a  i^i  x )
) )
72, 6sbcie 3314 . . . . 5  |-  ( [. ( a  i^i  x
)  /  b ]. b  C_  ( a  i^i  x )  <->  ( a  i^i  x )  C_  (
a  i^i  x )
)
8 df-ne 2635 . . . . . . 7  |-  ( b  =/=  (/)  <->  -.  b  =  (/) )
98sbcbii 3335 . . . . . 6  |-  ( [. ( a  i^i  x
)  /  b ]. b  =/=  (/)  <->  [. ( a  i^i  x )  /  b ].  -.  b  =  (/) )
10 sbcng 3320 . . . . . . . 8  |-  ( ( a  i^i  x )  e.  _V  ->  ( [. ( a  i^i  x
)  /  b ].  -.  b  =  (/)  <->  -.  [. (
a  i^i  x )  /  b ]. b  =  (/) ) )
1110bicomd 206 . . . . . . 7  |-  ( ( a  i^i  x )  e.  _V  ->  ( -.  [. ( a  i^i  x )  /  b ]. b  =  (/)  <->  [. ( a  i^i  x )  / 
b ].  -.  b  =  (/) ) )
122, 11ax-mp 5 . . . . . 6  |-  ( -. 
[. ( a  i^i  x )  /  b ]. b  =  (/)  <->  [. ( a  i^i  x )  / 
b ].  -.  b  =  (/) )
13 eqsbc3 3319 . . . . . . . 8  |-  ( ( a  i^i  x )  e.  _V  ->  ( [. ( a  i^i  x
)  /  b ]. b  =  (/)  <->  ( a  i^i  x )  =  (/) ) )
142, 13ax-mp 5 . . . . . . 7  |-  ( [. ( a  i^i  x
)  /  b ]. b  =  (/)  <->  ( a  i^i  x )  =  (/) )
1514necon3bbii 2683 . . . . . 6  |-  ( -. 
[. ( a  i^i  x )  /  b ]. b  =  (/)  <->  ( a  i^i  x )  =/=  (/) )
169, 12, 153bitr2i 281 . . . . 5  |-  ( [. ( a  i^i  x
)  /  b ]. b  =/=  (/)  <->  ( a  i^i  x )  =/=  (/) )
177, 16anbi12i 708 . . . 4  |-  ( (
[. ( a  i^i  x )  /  b ]. b  C_  ( a  i^i  x )  /\  [. ( a  i^i  x
)  /  b ]. b  =/=  (/) )  <->  ( (
a  i^i  x )  C_  ( a  i^i  x
)  /\  ( a  i^i  x )  =/=  (/) ) )
185, 17bitri 257 . . 3  |-  ( [. ( a  i^i  x
)  /  b ]. ( b  C_  (
a  i^i  x )  /\  b  =/=  (/) )  <->  ( (
a  i^i  x )  C_  ( a  i^i  x
)  /\  ( a  i^i  x )  =/=  (/) ) )
19 df-rex 2755 . . . . 5  |-  ( E. y  e.  b  ( b  i^i  y )  =  (/)  <->  E. y ( y  e.  b  /\  (
b  i^i  y )  =  (/) ) )
2019sbcbii 3335 . . . 4  |-  ( [. ( a  i^i  x
)  /  b ]. E. y  e.  b 
( b  i^i  y
)  =  (/)  <->  [. ( a  i^i  x )  / 
b ]. E. y ( y  e.  b  /\  ( b  i^i  y
)  =  (/) ) )
21 sbcan 3322 . . . . . . 7  |-  ( [. ( a  i^i  x
)  /  b ]. ( y  e.  b  /\  ( b  i^i  y )  =  (/) ) 
<->  ( [. ( a  i^i  x )  / 
b ]. y  e.  b  /\  [. ( a  i^i  x )  / 
b ]. ( b  i^i  y )  =  (/) ) )
22 sbcel2gv 3339 . . . . . . . . 9  |-  ( ( a  i^i  x )  e.  _V  ->  ( [. ( a  i^i  x
)  /  b ]. y  e.  b  <->  y  e.  ( a  i^i  x
) ) )
232, 22ax-mp 5 . . . . . . . 8  |-  ( [. ( a  i^i  x
)  /  b ]. y  e.  b  <->  y  e.  ( a  i^i  x
) )
24 sbceqg 3785 . . . . . . . . . 10  |-  ( ( a  i^i  x )  e.  _V  ->  ( [. ( a  i^i  x
)  /  b ]. ( b  i^i  y
)  =  (/)  <->  [_ ( a  i^i  x )  / 
b ]_ ( b  i^i  y )  =  [_ ( a  i^i  x
)  /  b ]_ (/) ) )
252, 24ax-mp 5 . . . . . . . . 9  |-  ( [. ( a  i^i  x
)  /  b ]. ( b  i^i  y
)  =  (/)  <->  [_ ( a  i^i  x )  / 
b ]_ ( b  i^i  y )  =  [_ ( a  i^i  x
)  /  b ]_ (/) )
26 csbin 3811 . . . . . . . . . . 11  |-  [_ (
a  i^i  x )  /  b ]_ (
b  i^i  y )  =  ( [_ (
a  i^i  x )  /  b ]_ b  i^i  [_ ( a  i^i  x )  /  b ]_ y )
27 csbvarg 3804 . . . . . . . . . . . . 13  |-  ( ( a  i^i  x )  e.  _V  ->  [_ (
a  i^i  x )  /  b ]_ b  =  ( a  i^i  x ) )
282, 27ax-mp 5 . . . . . . . . . . . 12  |-  [_ (
a  i^i  x )  /  b ]_ b  =  ( a  i^i  x )
29 csbconstg 3388 . . . . . . . . . . . . 13  |-  ( ( a  i^i  x )  e.  _V  ->  [_ (
a  i^i  x )  /  b ]_ y  =  y )
302, 29ax-mp 5 . . . . . . . . . . . 12  |-  [_ (
a  i^i  x )  /  b ]_ y  =  y
3128, 30ineq12i 3644 . . . . . . . . . . 11  |-  ( [_ ( a  i^i  x
)  /  b ]_ b  i^i  [_ ( a  i^i  x )  /  b ]_ y )  =  ( ( a  i^i  x
)  i^i  y )
3226, 31eqtri 2484 . . . . . . . . . 10  |-  [_ (
a  i^i  x )  /  b ]_ (
b  i^i  y )  =  ( ( a  i^i  x )  i^i  y )
33 csb0 3783 . . . . . . . . . 10  |-  [_ (
a  i^i  x )  /  b ]_ (/)  =  (/)
3432, 33eqeq12i 2476 . . . . . . . . 9  |-  ( [_ ( a  i^i  x
)  /  b ]_ ( b  i^i  y
)  =  [_ (
a  i^i  x )  /  b ]_ (/)  <->  ( (
a  i^i  x )  i^i  y )  =  (/) )
3525, 34bitri 257 . . . . . . . 8  |-  ( [. ( a  i^i  x
)  /  b ]. ( b  i^i  y
)  =  (/)  <->  ( (
a  i^i  x )  i^i  y )  =  (/) )
3623, 35anbi12i 708 . . . . . . 7  |-  ( (
[. ( a  i^i  x )  /  b ]. y  e.  b  /\  [. ( a  i^i  x )  /  b ]. ( b  i^i  y
)  =  (/) )  <->  ( y  e.  ( a  i^i  x
)  /\  ( (
a  i^i  x )  i^i  y )  =  (/) ) )
3721, 36bitri 257 . . . . . 6  |-  ( [. ( a  i^i  x
)  /  b ]. ( y  e.  b  /\  ( b  i^i  y )  =  (/) ) 
<->  ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) ) )
3837exbii 1729 . . . . 5  |-  ( E. y [. ( a  i^i  x )  / 
b ]. ( y  e.  b  /\  ( b  i^i  y )  =  (/) )  <->  E. y ( y  e.  ( a  i^i  x )  /\  (
( a  i^i  x
)  i^i  y )  =  (/) ) )
39 sbcex2 3330 . . . . 5  |-  ( [. ( a  i^i  x
)  /  b ]. E. y ( y  e.  b  /\  ( b  i^i  y )  =  (/) )  <->  E. y [. (
a  i^i  x )  /  b ]. (
y  e.  b  /\  ( b  i^i  y
)  =  (/) ) )
40 df-rex 2755 . . . . 5  |-  ( E. y  e.  ( a  i^i  x ) ( ( a  i^i  x
)  i^i  y )  =  (/)  <->  E. y ( y  e.  ( a  i^i  x )  /\  (
( a  i^i  x
)  i^i  y )  =  (/) ) )
4138, 39, 403bitr4i 285 . . . 4  |-  ( [. ( a  i^i  x
)  /  b ]. E. y ( y  e.  b  /\  ( b  i^i  y )  =  (/) )  <->  E. y  e.  ( a  i^i  x ) ( ( a  i^i  x )  i^i  y
)  =  (/) )
4220, 41bitri 257 . . 3  |-  ( [. ( a  i^i  x
)  /  b ]. E. y  e.  b 
( b  i^i  y
)  =  (/)  <->  E. y  e.  ( a  i^i  x
) ( ( a  i^i  x )  i^i  y )  =  (/) )
4318, 42imbi12i 332 . 2  |-  ( (
[. ( a  i^i  x )  /  b ]. ( b  C_  (
a  i^i  x )  /\  b  =/=  (/) )  ->  [. ( a  i^i  x
)  /  b ]. E. y  e.  b 
( b  i^i  y
)  =  (/) )  <->  ( (
( a  i^i  x
)  C_  ( a  i^i  x )  /\  (
a  i^i  x )  =/=  (/) )  ->  E. y  e.  ( a  i^i  x
) ( ( a  i^i  x )  i^i  y )  =  (/) ) )
444, 43bitri 257 1  |-  ( [. ( a  i^i  x
)  /  b ]. ( ( b  C_  ( a  i^i  x
)  /\  b  =/=  (/) )  ->  E. y  e.  b  ( b  i^i  y )  =  (/) ) 
<->  ( ( ( a  i^i  x )  C_  ( a  i^i  x
)  /\  ( a  i^i  x )  =/=  (/) )  ->  E. y  e.  (
a  i^i  x )
( ( a  i^i  x )  i^i  y
)  =  (/) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 375    = wceq 1455   E.wex 1674    e. wcel 1898    =/= wne 2633   E.wrex 2750   _Vcvv 3057   [.wsbc 3279   [_csb 3375    i^i cin 3415    C_ wss 3416   (/)c0 3743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-sep 4539
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3an 993  df-tru 1458  df-fal 1461  df-ex 1675  df-nf 1679  df-sb 1809  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-rex 2755  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-in 3423  df-ss 3430  df-nul 3744
This theorem is referenced by:  onfrALTlem3  36954  onfrALTlem3VD  37324
  Copyright terms: Public domain W3C validator