Mathbox for Alan Sare < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onfrALTlem3VD Structured version   Unicode version

Theorem onfrALTlem3VD 33415
Description: Virtual deduction proof of onfrALTlem3 33044. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALTlem3 33044 is onfrALTlem3VD 33415 without virtual deductions and was automatically derived from onfrALTlem3VD 33415.
 1:: 2:: 3:2: 4:1: 5:3,4: 6:5: 7:6: 8:: 9:7,8: 10:9: 11:10: 12:: 13:12,8: 14:13,11: 15:: 16:14,15: 17:: 18:2: 19:18: 20:17,19: qed:16,20:
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
onfrALTlem3VD
Distinct variable groups:   ,   ,

Proof of Theorem onfrALTlem3VD
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 vex 3098 . . . . 5
2 inss2 3704 . . . . 5
31, 2ssexi 4582 . . . 4
4 idn2 33127 . . . . . . . . . . 11
5 simpl 457 . . . . . . . . . . 11
64, 5e2 33145 . . . . . . . . . 10
7 idn1 33079 . . . . . . . . . . 11
8 simpl 457 . . . . . . . . . . 11
97, 8e1a 33141 . . . . . . . . . 10
10 ssel 3483 . . . . . . . . . . 11
1110com12 31 . . . . . . . . . 10
126, 9, 11e21 33255 . . . . . . . . 9
13 eloni 4878 . . . . . . . . 9
1412, 13e2 33145 . . . . . . . 8
15 ordwe 4881 . . . . . . . 8
1614, 15e2 33145 . . . . . . 7
17 wess 4856 . . . . . . . 8
1817com12 31 . . . . . . 7
1916, 2, 18e20 33252 . . . . . 6
20 wefr 4859 . . . . . 6
2119, 20e2 33145 . . . . 5
22 dfepfr 4854 . . . . . 6
2322biimpi 194 . . . . 5
2421, 23e2 33145 . . . 4
25 spsbc 3326 . . . 4
263, 24, 25e02 33211 . . 3
27 onfrALTlem5 33042 . . 3
2826, 27e2bi 33146 . 2
29 ssid 3508 . . 3
30 simpr 461 . . . . 5
314, 30e2 33145 . . . 4
32 df-ne 2640 . . . . 5
3332biimpri 206 . . . 4
3431, 33e2 33145 . . 3
35 pm3.2 447 . . 3
3629, 34, 35e02 33211 . 2
37 id 22 . 2
3828, 36, 37e22 33185 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4   wa 369  wal 1381   wceq 1383   wcel 1804   wne 2638  wrex 2794  cvv 3095  wsbc 3313   cin 3460   wss 3461  c0 3770   cep 4779   wfr 4825   wwe 4827   word 4867  con0 4868  wvd2 33082 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pr 4676 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 976  df-tru 1386  df-fal 1389  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3771  df-if 3927  df-sn 4015  df-pr 4017  df-op 4021  df-uni 4235  df-br 4438  df-opab 4496  df-tr 4531  df-eprel 4781  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-vd1 33075  df-vd2 33083 This theorem is referenced by:  onfrALTlem2VD  33417
 Copyright terms: Public domain W3C validator