Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onfrALTlem3 Structured version   Unicode version

Theorem onfrALTlem3 33710
Description: Lemma for onfrALT 33715. (Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
onfrALTlem3  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->  E. y  e.  ( a  i^i  x
) ( ( a  i^i  x )  i^i  y )  =  (/) ) )
Distinct variable groups:    y, a    x, y

Proof of Theorem onfrALTlem3
Dummy variable  b is distinct from all other variables.
StepHypRef Expression
1 ssid 3508 . . 3  |-  ( a  i^i  x )  C_  ( a  i^i  x
)
2 simpr 459 . . . . 5  |-  ( ( x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) )  ->  -.  ( a  i^i  x
)  =  (/) )
32a1i 11 . . . 4  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->  -.  (
a  i^i  x )  =  (/) ) )
4 df-ne 2651 . . . 4  |-  ( ( a  i^i  x )  =/=  (/)  <->  -.  ( a  i^i  x )  =  (/) )
53, 4syl6ibr 227 . . 3  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->  ( a  i^i  x )  =/=  (/) ) )
6 pm3.2 445 . . 3  |-  ( ( a  i^i  x ) 
C_  ( a  i^i  x )  ->  (
( a  i^i  x
)  =/=  (/)  ->  (
( a  i^i  x
)  C_  ( a  i^i  x )  /\  (
a  i^i  x )  =/=  (/) ) ) )
71, 5, 6ee02 33610 . 2  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->  ( ( a  i^i  x ) 
C_  ( a  i^i  x )  /\  (
a  i^i  x )  =/=  (/) ) ) )
8 vex 3109 . . . . 5  |-  x  e. 
_V
98inex2 4579 . . . 4  |-  ( a  i^i  x )  e. 
_V
10 inss2 3705 . . . . . . 7  |-  ( a  i^i  x )  C_  x
11 simpl 455 . . . . . . . . . 10  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  a  C_  On )
12 simpl 455 . . . . . . . . . 10  |-  ( ( x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) )  ->  x  e.  a )
13 ssel 3483 . . . . . . . . . 10  |-  ( a 
C_  On  ->  ( x  e.  a  ->  x  e.  On ) )
1411, 12, 13syl2im 38 . . . . . . . . 9  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->  x  e.  On ) )
15 eloni 4877 . . . . . . . . 9  |-  ( x  e.  On  ->  Ord  x )
1614, 15syl6 33 . . . . . . . 8  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->  Ord  x
) )
17 ordwe 4880 . . . . . . . 8  |-  ( Ord  x  ->  _E  We  x )
1816, 17syl6 33 . . . . . . 7  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->  _E  We  x ) )
19 wess 4855 . . . . . . 7  |-  ( ( a  i^i  x ) 
C_  x  ->  (  _E  We  x  ->  _E  We  ( a  i^i  x
) ) )
2010, 18, 19ee02 33610 . . . . . 6  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->  _E  We  ( a  i^i  x
) ) )
21 wefr 4858 . . . . . 6  |-  (  _E  We  ( a  i^i  x )  ->  _E  Fr  ( a  i^i  x
) )
2220, 21syl6 33 . . . . 5  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->  _E  Fr  ( a  i^i  x
) ) )
23 dfepfr 4853 . . . . 5  |-  (  _E  Fr  ( a  i^i  x )  <->  A. b
( ( b  C_  ( a  i^i  x
)  /\  b  =/=  (/) )  ->  E. y  e.  b  ( b  i^i  y )  =  (/) ) )
2422, 23syl6ib 226 . . . 4  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->  A. b
( ( b  C_  ( a  i^i  x
)  /\  b  =/=  (/) )  ->  E. y  e.  b  ( b  i^i  y )  =  (/) ) ) )
25 spsbc 3337 . . . 4  |-  ( ( a  i^i  x )  e.  _V  ->  ( A. b ( ( b 
C_  ( a  i^i  x )  /\  b  =/=  (/) )  ->  E. y  e.  b  ( b  i^i  y )  =  (/) )  ->  [. ( a  i^i  x )  /  b ]. ( ( b  C_  ( a  i^i  x
)  /\  b  =/=  (/) )  ->  E. y  e.  b  ( b  i^i  y )  =  (/) ) ) )
269, 24, 25ee02 33610 . . 3  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->  [. (
a  i^i  x )  /  b ]. (
( b  C_  (
a  i^i  x )  /\  b  =/=  (/) )  ->  E. y  e.  b 
( b  i^i  y
)  =  (/) ) ) )
27 onfrALTlem5 33708 . . 3  |-  ( [. ( a  i^i  x
)  /  b ]. ( ( b  C_  ( a  i^i  x
)  /\  b  =/=  (/) )  ->  E. y  e.  b  ( b  i^i  y )  =  (/) ) 
<->  ( ( ( a  i^i  x )  C_  ( a  i^i  x
)  /\  ( a  i^i  x )  =/=  (/) )  ->  E. y  e.  (
a  i^i  x )
( ( a  i^i  x )  i^i  y
)  =  (/) ) )
2826, 27syl6ib 226 . 2  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->  ( ( ( a  i^i  x
)  C_  ( a  i^i  x )  /\  (
a  i^i  x )  =/=  (/) )  ->  E. y  e.  ( a  i^i  x
) ( ( a  i^i  x )  i^i  y )  =  (/) ) ) )
297, 28mpdd 40 1  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->  E. y  e.  ( a  i^i  x
) ( ( a  i^i  x )  i^i  y )  =  (/) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367   A.wal 1396    = wceq 1398    e. wcel 1823    =/= wne 2649   E.wrex 2805   _Vcvv 3106   [.wsbc 3324    i^i cin 3460    C_ wss 3461   (/)c0 3783    _E cep 4778    Fr wfr 4824    We wwe 4826   Ord word 4866   Oncon0 4867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pr 4676
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-fal 1404  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-tr 4533  df-eprel 4780  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871
This theorem is referenced by:  onfrALTlem2  33712
  Copyright terms: Public domain W3C validator