Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onfrALTlem2VD Structured version   Unicode version

Theorem onfrALTlem2VD 32787
Description: Virtual deduction proof of onfrALTlem2 32416. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALTlem2 32416 is onfrALTlem2VD 32787 without virtual deductions and was automatically derived from onfrALTlem2VD 32787.
1::  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) ) ).
2:1:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  z  e.  ( a  i^i  y ) ).
3:2:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  z  e.  a ).
4::  |-  (. ( a  C_  On  /\  a  =/=  (/) )  ->.  ( a  C_  On  /\  a  =/=  (/) ) ).
5::  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->.  ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ).
6:5:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->.  x  e.  a ).
7:4:  |-  (. ( a  C_  On  /\  a  =/=  (/) )  ->.  a  C_  On ).
8:6,7:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->.  x  e.  On ).
9:8:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->.  Ord  x ).
10:9:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->.  Tr  x ).
11:1:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  y  e.  ( a  i^i  x ) ).
12:11:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  y  e.  x ).
13:2:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  z  e.  y ).
14:10,12,13:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  z  e.  x ).
15:3,14:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  z  e.  ( a  i^i  x ) ).
16:13,15:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  z  e.  ( ( a  i^i  x )  i^i  y ) ).
17:16:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y  )  =  (/) )  ->.  ( z  e.  ( a  i^i  y )  ->  z  e.  ( ( a  i^i  x )  i^i  y ) ) ).
18:17:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y  )  =  (/) )  ->.  A. z ( z  e.  ( a  i^i  y )  ->  z  e.  ( ( a  i^i  x )  i^i  y ) ) ).
19:18:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y  )  =  (/) )  ->.  ( a  i^i  y )  C_  ( ( a  i^i  x )  i^i  y ) ).
20::  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y  )  =  (/) )  ->.  ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) ) ).
21:20:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y  )  =  (/) )  ->.  ( ( a  i^i  x )  i^i  y )  =  (/) ).
22:19,21:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y  )  =  (/) )  ->.  ( a  i^i  y )  =  (/) ).
23:20:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y  )  =  (/) )  ->.  y  e.  ( a  i^i  x ) ).
24:23:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y  )  =  (/) )  ->.  y  e.  a ).
25:22,24:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y  )  =  (/) )  ->.  ( y  e.  a  /\  ( a  i^i  y )  =  (/) ) ).
26:25:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->.  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  ->  ( y  e.  a  /\  ( a  i^i  y )  =  (/) ) ) ).
27:26:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->.  A. y ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x  )  i^i  y )  =  (/) )  ->  ( y  e.  a  /\  ( a  i^i  y )  =  (/) ) ) ).
28:27:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->.  ( E. y ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x  )  i^i  y )  =  (/) )  ->  E. y ( y  e.  a  /\  ( a  i^i  y )  =  (/) ) ) ).
29::  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->.  E. y  e.  ( a  i^i  x ) ( ( a  i^i  x )  i^i  y  )  =  (/) ).
30:29:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->.  E. y ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) ) ).
31:28,30:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->.  E. y ( y  e.  a  /\  ( a  i^i  y )  =  (/) ) ).
qed:31:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->.  E. y  e.  a ( a  i^i  y )  =  (/) ).
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
onfrALTlem2VD  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) )  ->.  E. y  e.  a  ( a  i^i  y )  =  (/) ).
Distinct variable groups:    y, a    x, y

Proof of Theorem onfrALTlem2VD
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 idn3 32499 . . . . . . . . . . . . . 14  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) ) ,. ( ( y  e.  ( a  i^i  x
)  /\  ( (
a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  ( ( y  e.  ( a  i^i  x )  /\  (
( a  i^i  x
)  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y
) ) ).
2 simpr 461 . . . . . . . . . . . . . 14  |-  ( ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->  z  e.  ( a  i^i  y
) )
31, 2e3 32632 . . . . . . . . . . . . 13  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) ) ,. ( ( y  e.  ( a  i^i  x
)  /\  ( (
a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  z  e.  ( a  i^i  y ) ).
4 inss2 3719 . . . . . . . . . . . . . 14  |-  ( a  i^i  y )  C_  y
54sseli 3500 . . . . . . . . . . . . 13  |-  ( z  e.  ( a  i^i  y )  ->  z  e.  y )
63, 5e3 32632 . . . . . . . . . . . 12  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) ) ,. ( ( y  e.  ( a  i^i  x
)  /\  ( (
a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  z  e.  y ).
7 inss1 3718 . . . . . . . . . . . . . . 15  |-  ( a  i^i  y )  C_  a
87sseli 3500 . . . . . . . . . . . . . 14  |-  ( z  e.  ( a  i^i  y )  ->  z  e.  a )
93, 8e3 32632 . . . . . . . . . . . . 13  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) ) ,. ( ( y  e.  ( a  i^i  x
)  /\  ( (
a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  z  e.  a ).
10 idn2 32497 . . . . . . . . . . . . . . . . . 18  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) )  ->.  ( x  e.  a  /\  -.  (
a  i^i  x )  =  (/) ) ).
11 simpl 457 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) )  ->  x  e.  a )
1210, 11e2 32515 . . . . . . . . . . . . . . . . 17  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) )  ->.  x  e.  a ).
13 idn1 32449 . . . . . . . . . . . . . . . . . 18  |-  (. (
a  C_  On  /\  a  =/=  (/) )  ->.  ( a  C_  On  /\  a  =/=  (/) ) ).
14 simpl 457 . . . . . . . . . . . . . . . . . 18  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  a  C_  On )
1513, 14e1a 32511 . . . . . . . . . . . . . . . . 17  |-  (. (
a  C_  On  /\  a  =/=  (/) )  ->.  a  C_  On ).
16 ssel 3498 . . . . . . . . . . . . . . . . . 18  |-  ( a 
C_  On  ->  ( x  e.  a  ->  x  e.  On ) )
1716com12 31 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  a  ->  (
a  C_  On  ->  x  e.  On ) )
1812, 15, 17e21 32625 . . . . . . . . . . . . . . . 16  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) )  ->.  x  e.  On ).
19 eloni 4888 . . . . . . . . . . . . . . . 16  |-  ( x  e.  On  ->  Ord  x )
2018, 19e2 32515 . . . . . . . . . . . . . . 15  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) )  ->.  Ord  x ).
21 ordtr 4892 . . . . . . . . . . . . . . 15  |-  ( Ord  x  ->  Tr  x
)
2220, 21e2 32515 . . . . . . . . . . . . . 14  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) )  ->.  Tr  x ).
23 simpll 753 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->  y  e.  ( a  i^i  x
) )
241, 23e3 32632 . . . . . . . . . . . . . . 15  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) ) ,. ( ( y  e.  ( a  i^i  x
)  /\  ( (
a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  y  e.  ( a  i^i  x ) ).
25 inss2 3719 . . . . . . . . . . . . . . . 16  |-  ( a  i^i  x )  C_  x
2625sseli 3500 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( a  i^i  x )  ->  y  e.  x )
2724, 26e3 32632 . . . . . . . . . . . . . 14  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) ) ,. ( ( y  e.  ( a  i^i  x
)  /\  ( (
a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  y  e.  x ).
28 trel 4547 . . . . . . . . . . . . . . 15  |-  ( Tr  x  ->  ( (
z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )
2928expcomd 438 . . . . . . . . . . . . . 14  |-  ( Tr  x  ->  ( y  e.  x  ->  ( z  e.  y  ->  z  e.  x ) ) )
3022, 27, 6, 29e233 32660 . . . . . . . . . . . . 13  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) ) ,. ( ( y  e.  ( a  i^i  x
)  /\  ( (
a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  z  e.  x ).
31 elin 3687 . . . . . . . . . . . . . 14  |-  ( z  e.  ( a  i^i  x )  <->  ( z  e.  a  /\  z  e.  x ) )
3231simplbi2 625 . . . . . . . . . . . . 13  |-  ( z  e.  a  ->  (
z  e.  x  -> 
z  e.  ( a  i^i  x ) ) )
339, 30, 32e33 32629 . . . . . . . . . . . 12  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) ) ,. ( ( y  e.  ( a  i^i  x
)  /\  ( (
a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  z  e.  ( a  i^i  x ) ).
34 elin 3687 . . . . . . . . . . . . 13  |-  ( z  e.  ( ( a  i^i  x )  i^i  y )  <->  ( z  e.  ( a  i^i  x
)  /\  z  e.  y ) )
3534simplbi2com 627 . . . . . . . . . . . 12  |-  ( z  e.  y  ->  (
z  e.  ( a  i^i  x )  -> 
z  e.  ( ( a  i^i  x )  i^i  y ) ) )
366, 33, 35e33 32629 . . . . . . . . . . 11  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) ) ,. ( ( y  e.  ( a  i^i  x
)  /\  ( (
a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  z  e.  ( ( a  i^i  x
)  i^i  y ) ).
3736in3an 32495 . . . . . . . . . 10  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) ) ,. ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) ) 
->.  ( z  e.  ( a  i^i  y )  ->  z  e.  ( ( a  i^i  x
)  i^i  y )
) ).
3837gen31 32505 . . . . . . . . 9  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) ) ,. ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) ) 
->.  A. z ( z  e.  ( a  i^i  y )  ->  z  e.  ( ( a  i^i  x )  i^i  y
) ) ).
39 dfss2 3493 . . . . . . . . . 10  |-  ( ( a  i^i  y ) 
C_  ( ( a  i^i  x )  i^i  y )  <->  A. z
( z  e.  ( a  i^i  y )  ->  z  e.  ( ( a  i^i  x
)  i^i  y )
) )
4039biimpri 206 . . . . . . . . 9  |-  ( A. z ( z  e.  ( a  i^i  y
)  ->  z  e.  ( ( a  i^i  x )  i^i  y
) )  ->  (
a  i^i  y )  C_  ( ( a  i^i  x )  i^i  y
) )
4138, 40e3 32632 . . . . . . . 8  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) ) ,. ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) ) 
->.  ( a  i^i  y
)  C_  ( (
a  i^i  x )  i^i  y ) ).
42 idn3 32499 . . . . . . . . 9  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) ) ,. ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) ) 
->.  ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) ) ).
43 simpr 461 . . . . . . . . 9  |-  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y
)  =  (/) )  -> 
( ( a  i^i  x )  i^i  y
)  =  (/) )
4442, 43e3 32632 . . . . . . . 8  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) ) ,. ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) ) 
->.  ( ( a  i^i  x )  i^i  y
)  =  (/) ).
45 sseq0 3817 . . . . . . . . 9  |-  ( ( ( a  i^i  y
)  C_  ( (
a  i^i  x )  i^i  y )  /\  (
( a  i^i  x
)  i^i  y )  =  (/) )  ->  (
a  i^i  y )  =  (/) )
4645ex 434 . . . . . . . 8  |-  ( ( a  i^i  y ) 
C_  ( ( a  i^i  x )  i^i  y )  ->  (
( ( a  i^i  x )  i^i  y
)  =  (/)  ->  (
a  i^i  y )  =  (/) ) )
4741, 44, 46e33 32629 . . . . . . 7  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) ) ,. ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) ) 
->.  ( a  i^i  y
)  =  (/) ).
48 simpl 457 . . . . . . . . 9  |-  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y
)  =  (/) )  -> 
y  e.  ( a  i^i  x ) )
4942, 48e3 32632 . . . . . . . 8  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) ) ,. ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) ) 
->.  y  e.  (
a  i^i  x ) ).
50 inss1 3718 . . . . . . . . 9  |-  ( a  i^i  x )  C_  a
5150sseli 3500 . . . . . . . 8  |-  ( y  e.  ( a  i^i  x )  ->  y  e.  a )
5249, 51e3 32632 . . . . . . 7  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) ) ,. ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) ) 
->.  y  e.  a ).
53 pm3.21 448 . . . . . . 7  |-  ( ( a  i^i  y )  =  (/)  ->  ( y  e.  a  ->  (
y  e.  a  /\  ( a  i^i  y
)  =  (/) ) ) )
5447, 52, 53e33 32629 . . . . . 6  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) ) ,. ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) ) 
->.  ( y  e.  a  /\  ( a  i^i  y )  =  (/) ) ).
5554in3 32493 . . . . 5  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) )  ->.  ( (
y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y
)  =  (/) )  -> 
( y  e.  a  /\  ( a  i^i  y )  =  (/) ) ) ).
5655gen21 32503 . . . 4  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) )  ->.  A. y
( ( y  e.  ( a  i^i  x
)  /\  ( (
a  i^i  x )  i^i  y )  =  (/) )  ->  ( y  e.  a  /\  ( a  i^i  y )  =  (/) ) ) ).
57 exim 1633 . . . 4  |-  ( A. y ( ( y  e.  ( a  i^i  x )  /\  (
( a  i^i  x
)  i^i  y )  =  (/) )  ->  (
y  e.  a  /\  ( a  i^i  y
)  =  (/) ) )  ->  ( E. y
( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  ->  E. y ( y  e.  a  /\  (
a  i^i  y )  =  (/) ) ) )
5856, 57e2 32515 . . 3  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) )  ->.  ( E. y ( y  e.  ( a  i^i  x
)  /\  ( (
a  i^i  x )  i^i  y )  =  (/) )  ->  E. y ( y  e.  a  /\  (
a  i^i  y )  =  (/) ) ) ).
59 onfrALTlem3VD 32785 . . . 4  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) )  ->.  E. y  e.  ( a  i^i  x
) ( ( a  i^i  x )  i^i  y )  =  (/) ).
60 df-rex 2820 . . . . 5  |-  ( E. y  e.  ( a  i^i  x ) ( ( a  i^i  x
)  i^i  y )  =  (/)  <->  E. y ( y  e.  ( a  i^i  x )  /\  (
( a  i^i  x
)  i^i  y )  =  (/) ) )
6160biimpi 194 . . . 4  |-  ( E. y  e.  ( a  i^i  x ) ( ( a  i^i  x
)  i^i  y )  =  (/)  ->  E. y
( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) ) )
6259, 61e2 32515 . . 3  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) )  ->.  E. y
( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) ) ).
63 id 22 . . 3  |-  ( ( E. y ( y  e.  ( a  i^i  x )  /\  (
( a  i^i  x
)  i^i  y )  =  (/) )  ->  E. y
( y  e.  a  /\  ( a  i^i  y )  =  (/) ) )  ->  ( E. y ( y  e.  ( a  i^i  x
)  /\  ( (
a  i^i  x )  i^i  y )  =  (/) )  ->  E. y ( y  e.  a  /\  (
a  i^i  y )  =  (/) ) ) )
6458, 62, 63e22 32555 . 2  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) )  ->.  E. y
( y  e.  a  /\  ( a  i^i  y )  =  (/) ) ).
65 df-rex 2820 . . 3  |-  ( E. y  e.  a  ( a  i^i  y )  =  (/)  <->  E. y ( y  e.  a  /\  (
a  i^i  y )  =  (/) ) )
6665biimpri 206 . 2  |-  ( E. y ( y  e.  a  /\  ( a  i^i  y )  =  (/) )  ->  E. y  e.  a  ( a  i^i  y )  =  (/) )
6764, 66e2 32515 1  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) )  ->.  E. y  e.  a  ( a  i^i  y )  =  (/) ).
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369   A.wal 1377    = wceq 1379   E.wex 1596    e. wcel 1767    =/= wne 2662   E.wrex 2815    i^i cin 3475    C_ wss 3476   (/)c0 3785   Tr wtr 4540   Ord word 4877   Oncon0 4878   (.wvd2 32452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-tr 4541  df-eprel 4791  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-vd1 32445  df-vd2 32453  df-vd3 32465
This theorem is referenced by:  onfrALTVD  32789
  Copyright terms: Public domain W3C validator