Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onfrALTlem2 Structured version   Visualization version   Unicode version

Theorem onfrALTlem2 36906
Description: Lemma for onfrALT 36909. (Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
onfrALTlem2  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->  E. y  e.  a  ( a  i^i  y )  =  (/) ) )
Distinct variable groups:    y, a    x, y

Proof of Theorem onfrALTlem2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 simpr 463 . . . . . . . . . . . 12  |-  ( ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->  z  e.  ( a  i^i  y
) )
212a1i 12 . . . . . . . . . . 11  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->  ( ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->  z  e.  ( a  i^i  y
) ) ) )
3 inss2 3652 . . . . . . . . . . . 12  |-  ( a  i^i  y )  C_  y
43sseli 3427 . . . . . . . . . . 11  |-  ( z  e.  ( a  i^i  y )  ->  z  e.  y )
52, 4syl8 72 . . . . . . . . . 10  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->  ( ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->  z  e.  y ) ) )
6 inss1 3651 . . . . . . . . . . . . 13  |-  ( a  i^i  y )  C_  a
76sseli 3427 . . . . . . . . . . . 12  |-  ( z  e.  ( a  i^i  y )  ->  z  e.  a )
82, 7syl8 72 . . . . . . . . . . 11  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->  ( ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->  z  e.  a ) ) )
9 simpl 459 . . . . . . . . . . . . . . 15  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  a  C_  On )
10 simpl 459 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) )  ->  x  e.  a )
11 ssel 3425 . . . . . . . . . . . . . . 15  |-  ( a 
C_  On  ->  ( x  e.  a  ->  x  e.  On ) )
129, 10, 11syl2im 39 . . . . . . . . . . . . . 14  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->  x  e.  On ) )
13 eloni 5432 . . . . . . . . . . . . . 14  |-  ( x  e.  On  ->  Ord  x )
1412, 13syl6 34 . . . . . . . . . . . . 13  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->  Ord  x
) )
15 ordtr 5436 . . . . . . . . . . . . 13  |-  ( Ord  x  ->  Tr  x
)
1614, 15syl6 34 . . . . . . . . . . . 12  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->  Tr  x
) )
17 simpll 759 . . . . . . . . . . . . . 14  |-  ( ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->  y  e.  ( a  i^i  x
) )
18172a1i 12 . . . . . . . . . . . . 13  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->  ( ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->  y  e.  ( a  i^i  x
) ) ) )
19 inss2 3652 . . . . . . . . . . . . . 14  |-  ( a  i^i  x )  C_  x
2019sseli 3427 . . . . . . . . . . . . 13  |-  ( y  e.  ( a  i^i  x )  ->  y  e.  x )
2118, 20syl8 72 . . . . . . . . . . . 12  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->  ( ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->  y  e.  x ) ) )
22 trel 4503 . . . . . . . . . . . . 13  |-  ( Tr  x  ->  ( (
z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )
2322expcomd 440 . . . . . . . . . . . 12  |-  ( Tr  x  ->  ( y  e.  x  ->  ( z  e.  y  ->  z  e.  x ) ) )
2416, 21, 5, 23ee233 36870 . . . . . . . . . . 11  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->  ( ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->  z  e.  x ) ) )
25 elin 3616 . . . . . . . . . . . 12  |-  ( z  e.  ( a  i^i  x )  <->  ( z  e.  a  /\  z  e.  x ) )
2625simplbi2 630 . . . . . . . . . . 11  |-  ( z  e.  a  ->  (
z  e.  x  -> 
z  e.  ( a  i^i  x ) ) )
278, 24, 26ee33 36872 . . . . . . . . . 10  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->  ( ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->  z  e.  ( a  i^i  x
) ) ) )
28 elin 3616 . . . . . . . . . . 11  |-  ( z  e.  ( ( a  i^i  x )  i^i  y )  <->  ( z  e.  ( a  i^i  x
)  /\  z  e.  y ) )
2928simplbi2com 632 . . . . . . . . . 10  |-  ( z  e.  y  ->  (
z  e.  ( a  i^i  x )  -> 
z  e.  ( ( a  i^i  x )  i^i  y ) ) )
305, 27, 29ee33 36872 . . . . . . . . 9  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->  ( ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->  z  e.  ( ( a  i^i  x )  i^i  y
) ) ) )
3130exp4a 610 . . . . . . . 8  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y
)  =  (/) )  -> 
( z  e.  ( a  i^i  y )  ->  z  e.  ( ( a  i^i  x
)  i^i  y )
) ) ) )
3231ggen31 36905 . . . . . . 7  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y
)  =  (/) )  ->  A. z ( z  e.  ( a  i^i  y
)  ->  z  e.  ( ( a  i^i  x )  i^i  y
) ) ) ) )
33 dfss2 3420 . . . . . . . 8  |-  ( ( a  i^i  y ) 
C_  ( ( a  i^i  x )  i^i  y )  <->  A. z
( z  e.  ( a  i^i  y )  ->  z  e.  ( ( a  i^i  x
)  i^i  y )
) )
3433biimpri 210 . . . . . . 7  |-  ( A. z ( z  e.  ( a  i^i  y
)  ->  z  e.  ( ( a  i^i  x )  i^i  y
) )  ->  (
a  i^i  y )  C_  ( ( a  i^i  x )  i^i  y
) )
3532, 34syl8 72 . . . . . 6  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y
)  =  (/) )  -> 
( a  i^i  y
)  C_  ( (
a  i^i  x )  i^i  y ) ) ) )
36 simpr 463 . . . . . . 7  |-  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y
)  =  (/) )  -> 
( ( a  i^i  x )  i^i  y
)  =  (/) )
37362a1i 12 . . . . . 6  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y
)  =  (/) )  -> 
( ( a  i^i  x )  i^i  y
)  =  (/) ) ) )
38 sseq0 3765 . . . . . . 7  |-  ( ( ( a  i^i  y
)  C_  ( (
a  i^i  x )  i^i  y )  /\  (
( a  i^i  x
)  i^i  y )  =  (/) )  ->  (
a  i^i  y )  =  (/) )
3938ex 436 . . . . . 6  |-  ( ( a  i^i  y ) 
C_  ( ( a  i^i  x )  i^i  y )  ->  (
( ( a  i^i  x )  i^i  y
)  =  (/)  ->  (
a  i^i  y )  =  (/) ) )
4035, 37, 39ee33 36872 . . . . 5  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y
)  =  (/) )  -> 
( a  i^i  y
)  =  (/) ) ) )
41 simpl 459 . . . . . . 7  |-  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y
)  =  (/) )  -> 
y  e.  ( a  i^i  x ) )
42412a1i 12 . . . . . 6  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y
)  =  (/) )  -> 
y  e.  ( a  i^i  x ) ) ) )
43 inss1 3651 . . . . . . 7  |-  ( a  i^i  x )  C_  a
4443sseli 3427 . . . . . 6  |-  ( y  e.  ( a  i^i  x )  ->  y  e.  a )
4542, 44syl8 72 . . . . 5  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y
)  =  (/) )  -> 
y  e.  a ) ) )
46 pm3.21 450 . . . . 5  |-  ( ( a  i^i  y )  =  (/)  ->  ( y  e.  a  ->  (
y  e.  a  /\  ( a  i^i  y
)  =  (/) ) ) )
4740, 45, 46ee33 36872 . . . 4  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y
)  =  (/) )  -> 
( y  e.  a  /\  ( a  i^i  y )  =  (/) ) ) ) )
4847alrimdv 1774 . . 3  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->  A. y
( ( y  e.  ( a  i^i  x
)  /\  ( (
a  i^i  x )  i^i  y )  =  (/) )  ->  ( y  e.  a  /\  ( a  i^i  y )  =  (/) ) ) ) )
49 onfrALTlem3 36904 . . . 4  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->  E. y  e.  ( a  i^i  x
) ( ( a  i^i  x )  i^i  y )  =  (/) ) )
50 df-rex 2742 . . . 4  |-  ( E. y  e.  ( a  i^i  x ) ( ( a  i^i  x
)  i^i  y )  =  (/)  <->  E. y ( y  e.  ( a  i^i  x )  /\  (
( a  i^i  x
)  i^i  y )  =  (/) ) )
5149, 50syl6ib 230 . . 3  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->  E. y
( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) ) ) )
52 exim 1705 . . 3  |-  ( A. y ( ( y  e.  ( a  i^i  x )  /\  (
( a  i^i  x
)  i^i  y )  =  (/) )  ->  (
y  e.  a  /\  ( a  i^i  y
)  =  (/) ) )  ->  ( E. y
( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  ->  E. y ( y  e.  a  /\  (
a  i^i  y )  =  (/) ) ) )
5348, 51, 52syl6c 66 . 2  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->  E. y
( y  e.  a  /\  ( a  i^i  y )  =  (/) ) ) )
54 df-rex 2742 . 2  |-  ( E. y  e.  a  ( a  i^i  y )  =  (/)  <->  E. y ( y  e.  a  /\  (
a  i^i  y )  =  (/) ) )
5553, 54syl6ibr 231 1  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->  E. y  e.  a  ( a  i^i  y )  =  (/) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 371   A.wal 1441    = wceq 1443   E.wex 1662    e. wcel 1886    =/= wne 2621   E.wrex 2737    i^i cin 3402    C_ wss 3403   (/)c0 3730   Tr wtr 4496   Ord word 5421   Oncon0 5422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-sep 4524  ax-nul 4533  ax-pr 4638
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 986  df-tru 1446  df-fal 1449  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-ral 2741  df-rex 2742  df-rab 2745  df-v 3046  df-sbc 3267  df-csb 3363  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-nul 3731  df-if 3881  df-sn 3968  df-pr 3970  df-op 3974  df-uni 4198  df-br 4402  df-opab 4461  df-tr 4497  df-eprel 4744  df-po 4754  df-so 4755  df-fr 4792  df-we 4794  df-ord 5425  df-on 5426
This theorem is referenced by:  onfrALT  36909
  Copyright terms: Public domain W3C validator