Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onfrALTVD Structured version   Unicode version

Theorem onfrALTVD 37204
Description: Virtual deduction proof of onfrALT 36828. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALT 36828 is onfrALTVD 37204 without virtual deductions and was automatically derived from onfrALTVD 37204.
1::  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->.  E. y  e.  a ( a  i^i  y )  =  (/) ).
2::  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  ( a  i^i  x )  =  (/) )  ->.  E. y  e.  a ( a  i^i  y )  =  (/) ).
3:1:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. x  e.  a  ->.  ( -.  ( a  i^i  x )  =  (/)  ->  E. y  e.  a ( a  i^i  y )  =  (/) ) ).
4:2:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. x  e.  a  ->.  ( ( a  i^i  x )  =  (/)  ->  E. y  e.  a ( a  i^i  y )  =  (/) ) ).
5::  |-  ( ( a  i^i  x )  =  (/)  \/  -.  ( a  i^i  x )  =  (/) )
6:5,4,3:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. x  e.  a  ->.  E. y  e.  a ( a  i^i  y )  =  (/) ).
7:6:  |-  (. ( a  C_  On  /\  a  =/=  (/) )  ->.  ( x  e.  a  ->  E. y  e.  a ( a  i^i  y )  =  (/) ) ).
8:7:  |-  (. ( a  C_  On  /\  a  =/=  (/) )  ->.  A. x ( x  e.  a  ->  E. y  e.  a ( a  i^i  y )  =  (/) ) ).
9:8:  |-  (. ( a  C_  On  /\  a  =/=  (/) )  ->.  ( E. x x  e.  a  ->  E. y  e.  a ( a  i^i  y )  =  (/) ) ).
10::  |-  ( a  =/=  (/)  <->  E. x x  e.  a )
11:9,10:  |-  (. ( a  C_  On  /\  a  =/=  (/) )  ->.  ( a  =/=  (/)  ->  E. y  e.  a ( a  i^i  y )  =  (/) ) ).
12::  |-  (. ( a  C_  On  /\  a  =/=  (/) )  ->.  ( a  C_  On  /\  a  =/=  (/) ) ).
13:12:  |-  (. ( a  C_  On  /\  a  =/=  (/) )  ->.  a  =/=  (/) ).
14:13,11:  |-  (. ( a  C_  On  /\  a  =/=  (/) )  ->.  E. y  e.  a ( a  i^i  y )  =  (/) ).
15:14:  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  E. y  e.  a  ( a  i^i  y )  =  (/) )
16:15:  |-  A. a ( ( a  C_  On  /\  a  =/=  (/) )  ->  E. y  e.  a ( a  i^i  y )  =  (/) )
qed:16:  |-  _E  Fr  On
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
onfrALTVD  |-  _E  Fr  On

Proof of Theorem onfrALTVD
Dummy variables  x  a  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idn1 36858 . . . . . 6  |-  (. (
a  C_  On  /\  a  =/=  (/) )  ->.  ( a  C_  On  /\  a  =/=  (/) ) ).
2 simpr 462 . . . . . 6  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  a  =/=  (/) )
31, 2e1a 36920 . . . . 5  |-  (. (
a  C_  On  /\  a  =/=  (/) )  ->.  a  =/=  (/)
).
4 exmid 416 . . . . . . . . . 10  |-  ( ( a  i^i  x )  =  (/)  \/  -.  ( a  i^i  x
)  =  (/) )
5 onfrALTlem1VD 37203 . . . . . . . . . . 11  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  ( a  i^i  x
)  =  (/) )  ->.  E. y  e.  a  ( a  i^i  y )  =  (/) ).
65in2an 36901 . . . . . . . . . 10  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. x  e.  a  ->.  ( ( a  i^i  x )  =  (/)  ->  E. y  e.  a  ( a  i^i  y
)  =  (/) ) ).
7 onfrALTlem2VD 37202 . . . . . . . . . . 11  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) )  ->.  E. y  e.  a  ( a  i^i  y )  =  (/) ).
87in2an 36901 . . . . . . . . . 10  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. x  e.  a  ->.  ( -.  (
a  i^i  x )  =  (/)  ->  E. y  e.  a  ( a  i^i  y )  =  (/) ) ).
9 pm2.61 174 . . . . . . . . . . 11  |-  ( ( ( a  i^i  x
)  =  (/)  ->  E. y  e.  a  ( a  i^i  y )  =  (/) )  ->  ( ( -.  ( a  i^i  x
)  =  (/)  ->  E. y  e.  a  ( a  i^i  y )  =  (/) )  ->  E. y  e.  a  ( a  i^i  y
)  =  (/) ) )
109a1i 11 . . . . . . . . . 10  |-  ( ( ( a  i^i  x
)  =  (/)  \/  -.  ( a  i^i  x
)  =  (/) )  -> 
( ( ( a  i^i  x )  =  (/)  ->  E. y  e.  a  ( a  i^i  y
)  =  (/) )  -> 
( ( -.  (
a  i^i  x )  =  (/)  ->  E. y  e.  a  ( a  i^i  y )  =  (/) )  ->  E. y  e.  a  ( a  i^i  y
)  =  (/) ) ) )
114, 6, 8, 10e022 36934 . . . . . . . . 9  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. x  e.  a  ->.  E. y  e.  a  ( a  i^i  y
)  =  (/) ).
1211in2 36898 . . . . . . . 8  |-  (. (
a  C_  On  /\  a  =/=  (/) )  ->.  ( x  e.  a  ->  E. y  e.  a  ( a  i^i  y )  =  (/) ) ).
1312gen11 36909 . . . . . . 7  |-  (. (
a  C_  On  /\  a  =/=  (/) )  ->.  A. x
( x  e.  a  ->  E. y  e.  a  ( a  i^i  y
)  =  (/) ) ).
14 19.23v 1811 . . . . . . . 8  |-  ( A. x ( x  e.  a  ->  E. y  e.  a  ( a  i^i  y )  =  (/) ) 
<->  ( E. x  x  e.  a  ->  E. y  e.  a  ( a  i^i  y )  =  (/) ) )
1514biimpi 197 . . . . . . 7  |-  ( A. x ( x  e.  a  ->  E. y  e.  a  ( a  i^i  y )  =  (/) )  ->  ( E. x  x  e.  a  ->  E. y  e.  a  ( a  i^i  y )  =  (/) ) )
1613, 15e1a 36920 . . . . . 6  |-  (. (
a  C_  On  /\  a  =/=  (/) )  ->.  ( E. x  x  e.  a  ->  E. y  e.  a  ( a  i^i  y
)  =  (/) ) ).
17 n0 3714 . . . . . 6  |-  ( a  =/=  (/)  <->  E. x  x  e.  a )
18 imbi1 324 . . . . . . 7  |-  ( ( a  =/=  (/)  <->  E. x  x  e.  a )  ->  ( ( a  =/=  (/)  ->  E. y  e.  a  ( a  i^i  y
)  =  (/) )  <->  ( E. x  x  e.  a  ->  E. y  e.  a  ( a  i^i  y
)  =  (/) ) ) )
1918biimprcd 228 . . . . . 6  |-  ( ( E. x  x  e.  a  ->  E. y  e.  a  ( a  i^i  y )  =  (/) )  ->  ( ( a  =/=  (/)  <->  E. x  x  e.  a )  ->  (
a  =/=  (/)  ->  E. y  e.  a  ( a  i^i  y )  =  (/) ) ) )
2016, 17, 19e10 36987 . . . . 5  |-  (. (
a  C_  On  /\  a  =/=  (/) )  ->.  ( a  =/=  (/)  ->  E. y  e.  a  ( a  i^i  y )  =  (/) ) ).
21 pm2.27 40 . . . . 5  |-  ( a  =/=  (/)  ->  ( (
a  =/=  (/)  ->  E. y  e.  a  ( a  i^i  y )  =  (/) )  ->  E. y  e.  a  ( a  i^i  y
)  =  (/) ) )
223, 20, 21e11 36981 . . . 4  |-  (. (
a  C_  On  /\  a  =/=  (/) )  ->.  E. y  e.  a  ( a  i^i  y )  =  (/) ).
2322in1 36855 . . 3  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  E. y  e.  a  ( a  i^i  y )  =  (/) )
2423ax-gen 1663 . 2  |-  A. a
( ( a  C_  On  /\  a  =/=  (/) )  ->  E. y  e.  a 
( a  i^i  y
)  =  (/) )
25 dfepfr 4781 . . 3  |-  (  _E  Fr  On  <->  A. a
( ( a  C_  On  /\  a  =/=  (/) )  ->  E. y  e.  a 
( a  i^i  y
)  =  (/) ) )
2625biimpri 209 . 2  |-  ( A. a ( ( a 
C_  On  /\  a  =/=  (/) )  ->  E. y  e.  a  ( a  i^i  y )  =  (/) )  ->  _E  Fr  On )
2724, 26e0a 37075 1  |-  _E  Fr  On
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    \/ wo 369    /\ wa 370   A.wal 1435    = wceq 1437   E.wex 1657    e. wcel 1872    =/= wne 2599   E.wrex 2715    i^i cin 3378    C_ wss 3379   (/)c0 3704    _E cep 4705    Fr wfr 4752   Oncon0 5385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-sep 4489  ax-nul 4498  ax-pr 4603
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-ral 2719  df-rex 2720  df-rab 2723  df-v 3024  df-sbc 3243  df-csb 3339  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-nul 3705  df-if 3855  df-sn 3942  df-pr 3944  df-op 3948  df-uni 4163  df-br 4367  df-opab 4426  df-tr 4462  df-eprel 4707  df-po 4717  df-so 4718  df-fr 4755  df-we 4757  df-ord 5388  df-on 5389  df-vd1 36854  df-vd2 36862  df-vd3 36874
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator