MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onfr Structured version   Unicode version

Theorem onfr 5481
Description: The ordinal class is well-founded. This lemma is needed for ordon 6624 in order to eliminate the need for the Axiom of Regularity. (Contributed by NM, 17-May-1994.)
Assertion
Ref Expression
onfr  |-  _E  Fr  On

Proof of Theorem onfr
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfepfr 4838 . 2  |-  (  _E  Fr  On  <->  A. x
( ( x  C_  On  /\  x  =/=  (/) )  ->  E. z  e.  x  ( x  i^i  z
)  =  (/) ) )
2 n0 3771 . . . 4  |-  ( x  =/=  (/)  <->  E. y  y  e.  x )
3 ineq2 3658 . . . . . . . . . 10  |-  ( z  =  y  ->  (
x  i^i  z )  =  ( x  i^i  y ) )
43eqeq1d 2424 . . . . . . . . 9  |-  ( z  =  y  ->  (
( x  i^i  z
)  =  (/)  <->  ( x  i^i  y )  =  (/) ) )
54rspcev 3182 . . . . . . . 8  |-  ( ( y  e.  x  /\  ( x  i^i  y
)  =  (/) )  ->  E. z  e.  x  ( x  i^i  z
)  =  (/) )
65adantll 718 . . . . . . 7  |-  ( ( ( x  C_  On  /\  y  e.  x )  /\  ( x  i^i  y )  =  (/) )  ->  E. z  e.  x  ( x  i^i  z
)  =  (/) )
7 inss1 3682 . . . . . . . 8  |-  ( x  i^i  y )  C_  x
8 ssel2 3459 . . . . . . . . . . . 12  |-  ( ( x  C_  On  /\  y  e.  x )  ->  y  e.  On )
9 eloni 5452 . . . . . . . . . . . 12  |-  ( y  e.  On  ->  Ord  y )
108, 9syl 17 . . . . . . . . . . 11  |-  ( ( x  C_  On  /\  y  e.  x )  ->  Ord  y )
11 ordfr 5457 . . . . . . . . . . 11  |-  ( Ord  y  ->  _E  Fr  y )
1210, 11syl 17 . . . . . . . . . 10  |-  ( ( x  C_  On  /\  y  e.  x )  ->  _E  Fr  y )
13 inss2 3683 . . . . . . . . . . 11  |-  ( x  i^i  y )  C_  y
14 vex 3083 . . . . . . . . . . . . 13  |-  x  e. 
_V
1514inex1 4565 . . . . . . . . . . . 12  |-  ( x  i^i  y )  e. 
_V
1615epfrc 4839 . . . . . . . . . . 11  |-  ( (  _E  Fr  y  /\  ( x  i^i  y
)  C_  y  /\  ( x  i^i  y
)  =/=  (/) )  ->  E. z  e.  (
x  i^i  y )
( ( x  i^i  y )  i^i  z
)  =  (/) )
1713, 16mp3an2 1348 . . . . . . . . . 10  |-  ( (  _E  Fr  y  /\  ( x  i^i  y
)  =/=  (/) )  ->  E. z  e.  (
x  i^i  y )
( ( x  i^i  y )  i^i  z
)  =  (/) )
1812, 17sylan 473 . . . . . . . . 9  |-  ( ( ( x  C_  On  /\  y  e.  x )  /\  ( x  i^i  y )  =/=  (/) )  ->  E. z  e.  (
x  i^i  y )
( ( x  i^i  y )  i^i  z
)  =  (/) )
19 inass 3672 . . . . . . . . . . . . 13  |-  ( ( x  i^i  y )  i^i  z )  =  ( x  i^i  (
y  i^i  z )
)
2010adantr 466 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  C_  On  /\  y  e.  x )  /\  z  e.  ( x  i^i  y ) )  ->  Ord  y )
21 simpr 462 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  C_  On  /\  y  e.  x )  /\  z  e.  ( x  i^i  y ) )  ->  z  e.  ( x  i^i  y
) )
2213, 21sseldi 3462 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  C_  On  /\  y  e.  x )  /\  z  e.  ( x  i^i  y ) )  ->  z  e.  y )
23 ordelss 5458 . . . . . . . . . . . . . . . 16  |-  ( ( Ord  y  /\  z  e.  y )  ->  z  C_  y )
2420, 22, 23syl2anc 665 . . . . . . . . . . . . . . 15  |-  ( ( ( x  C_  On  /\  y  e.  x )  /\  z  e.  ( x  i^i  y ) )  ->  z  C_  y )
25 dfss1 3667 . . . . . . . . . . . . . . 15  |-  ( z 
C_  y  <->  ( y  i^i  z )  =  z )
2624, 25sylib 199 . . . . . . . . . . . . . 14  |-  ( ( ( x  C_  On  /\  y  e.  x )  /\  z  e.  ( x  i^i  y ) )  ->  ( y  i^i  z )  =  z )
2726ineq2d 3664 . . . . . . . . . . . . 13  |-  ( ( ( x  C_  On  /\  y  e.  x )  /\  z  e.  ( x  i^i  y ) )  ->  ( x  i^i  ( y  i^i  z
) )  =  ( x  i^i  z ) )
2819, 27syl5eq 2475 . . . . . . . . . . . 12  |-  ( ( ( x  C_  On  /\  y  e.  x )  /\  z  e.  ( x  i^i  y ) )  ->  ( (
x  i^i  y )  i^i  z )  =  ( x  i^i  z ) )
2928eqeq1d 2424 . . . . . . . . . . 11  |-  ( ( ( x  C_  On  /\  y  e.  x )  /\  z  e.  ( x  i^i  y ) )  ->  ( (
( x  i^i  y
)  i^i  z )  =  (/)  <->  ( x  i^i  z )  =  (/) ) )
3029rexbidva 2933 . . . . . . . . . 10  |-  ( ( x  C_  On  /\  y  e.  x )  ->  ( E. z  e.  (
x  i^i  y )
( ( x  i^i  y )  i^i  z
)  =  (/)  <->  E. z  e.  ( x  i^i  y
) ( x  i^i  z )  =  (/) ) )
3130adantr 466 . . . . . . . . 9  |-  ( ( ( x  C_  On  /\  y  e.  x )  /\  ( x  i^i  y )  =/=  (/) )  -> 
( E. z  e.  ( x  i^i  y
) ( ( x  i^i  y )  i^i  z )  =  (/)  <->  E. z  e.  ( x  i^i  y ) ( x  i^i  z )  =  (/) ) )
3218, 31mpbid 213 . . . . . . . 8  |-  ( ( ( x  C_  On  /\  y  e.  x )  /\  ( x  i^i  y )  =/=  (/) )  ->  E. z  e.  (
x  i^i  y )
( x  i^i  z
)  =  (/) )
33 ssrexv 3526 . . . . . . . 8  |-  ( ( x  i^i  y ) 
C_  x  ->  ( E. z  e.  (
x  i^i  y )
( x  i^i  z
)  =  (/)  ->  E. z  e.  x  ( x  i^i  z )  =  (/) ) )
347, 32, 33mpsyl 65 . . . . . . 7  |-  ( ( ( x  C_  On  /\  y  e.  x )  /\  ( x  i^i  y )  =/=  (/) )  ->  E. z  e.  x  ( x  i^i  z
)  =  (/) )
356, 34pm2.61dane 2738 . . . . . 6  |-  ( ( x  C_  On  /\  y  e.  x )  ->  E. z  e.  x  ( x  i^i  z )  =  (/) )
3635ex 435 . . . . 5  |-  ( x 
C_  On  ->  ( y  e.  x  ->  E. z  e.  x  ( x  i^i  z )  =  (/) ) )
3736exlimdv 1772 . . . 4  |-  ( x 
C_  On  ->  ( E. y  y  e.  x  ->  E. z  e.  x  ( x  i^i  z
)  =  (/) ) )
382, 37syl5bi 220 . . 3  |-  ( x 
C_  On  ->  ( x  =/=  (/)  ->  E. z  e.  x  ( x  i^i  z )  =  (/) ) )
3938imp 430 . 2  |-  ( ( x  C_  On  /\  x  =/=  (/) )  ->  E. z  e.  x  ( x  i^i  z )  =  (/) )
401, 39mpgbir 1667 1  |-  _E  Fr  On
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437   E.wex 1657    e. wcel 1872    =/= wne 2614   E.wrex 2772    i^i cin 3435    C_ wss 3436   (/)c0 3761    _E cep 4762    Fr wfr 4809   Ord word 5441   Oncon0 5442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-sep 4546  ax-nul 4555  ax-pr 4660
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-ral 2776  df-rex 2777  df-rab 2780  df-v 3082  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3912  df-sn 3999  df-pr 4001  df-op 4005  df-uni 4220  df-br 4424  df-opab 4483  df-tr 4519  df-eprel 4764  df-po 4774  df-so 4775  df-fr 4812  df-we 4814  df-ord 5445  df-on 5446
This theorem is referenced by:  ordon  6624
  Copyright terms: Public domain W3C validator