MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onfin Structured version   Unicode version

Theorem onfin 7700
Description: An ordinal number is finite iff it is a natural number. Proposition 10.32 of [TakeutiZaring] p. 92. (Contributed by NM, 26-Jul-2004.)
Assertion
Ref Expression
onfin  |-  ( A  e.  On  ->  ( A  e.  Fin  <->  A  e.  om ) )

Proof of Theorem onfin
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 isfi 7531 . 2  |-  ( A  e.  Fin  <->  E. x  e.  om  A  ~~  x
)
2 onomeneq 7699 . . . . 5  |-  ( ( A  e.  On  /\  x  e.  om )  ->  ( A  ~~  x  <->  A  =  x ) )
3 eleq1a 2545 . . . . . 6  |-  ( x  e.  om  ->  ( A  =  x  ->  A  e.  om ) )
43adantl 466 . . . . 5  |-  ( ( A  e.  On  /\  x  e.  om )  ->  ( A  =  x  ->  A  e.  om ) )
52, 4sylbid 215 . . . 4  |-  ( ( A  e.  On  /\  x  e.  om )  ->  ( A  ~~  x  ->  A  e.  om )
)
65rexlimdva 2950 . . 3  |-  ( A  e.  On  ->  ( E. x  e.  om  A  ~~  x  ->  A  e.  om ) )
7 enrefg 7539 . . . 4  |-  ( A  e.  om  ->  A  ~~  A )
8 breq2 4446 . . . . 5  |-  ( x  =  A  ->  ( A  ~~  x  <->  A  ~~  A ) )
98rspcev 3209 . . . 4  |-  ( ( A  e.  om  /\  A  ~~  A )  ->  E. x  e.  om  A  ~~  x )
107, 9mpdan 668 . . 3  |-  ( A  e.  om  ->  E. x  e.  om  A  ~~  x
)
116, 10impbid1 203 . 2  |-  ( A  e.  On  ->  ( E. x  e.  om  A  ~~  x  <->  A  e.  om ) )
121, 11syl5bb 257 1  |-  ( A  e.  On  ->  ( A  e.  Fin  <->  A  e.  om ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1374    e. wcel 1762   E.wrex 2810   class class class wbr 4442   Oncon0 4873   omcom 6673    ~~ cen 7505   Fincfn 7508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-ral 2814  df-rex 2815  df-rab 2818  df-v 3110  df-sbc 3327  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-tp 4027  df-op 4029  df-uni 4241  df-br 4443  df-opab 4501  df-tr 4536  df-eprel 4786  df-id 4790  df-po 4795  df-so 4796  df-fr 4833  df-we 4835  df-ord 4876  df-on 4877  df-lim 4878  df-suc 4879  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-om 6674  df-er 7303  df-en 7509  df-dom 7510  df-sdom 7511  df-fin 7512
This theorem is referenced by:  onfin2  7701  fin17  8765  isfin7-2  8767
  Copyright terms: Public domain W3C validator